Exploring the venomous potential of marine crustaceans for drug development

Many animals use venoms for self-defense or hunting. The components of such venom, known as toxins, interfere with various physiological processes - which is also the reason why they are so interesting for the development of new pharmacological agents. While the venoms of some animal groups - including snakes, spiders, scorpions and insects - have already been quite well studied, the situation is entirely different for marine animal groups. Here, data exists only for individual animal species, meaning this group still holds great untapped potential.

It was only discovered a few years ago that there also exist venomous crustaceans, i.e. remipedes that look more like centipedes and live in marine underwater caves. A multidisciplinary research team led by Dr. Björn von Reumont, who first described the venom system in remipedes in 2014 and is currently a guest researcher at Goethe University Frankfurt, has now characterized a group of toxins from the Xibalbanus tulumensis remipede.

To that end, Reumont put together a team consisting of cooperation partners from Fraunhofer Institute for Translational Medicine (ITMP) within the framework of the LOEWE Center for Translational Biodiversity, as well as colleagues from the University of Leuven, from Cologne, Berlin and Munich – all of them also part of the European Venom Network (COST Action EUVEN).

The Xibalbanus tulumensis remipede lives in the cenotes which are the underwater cave systems on the Mexican Yucatan peninsula. The cave dweller injects the venom produced in its venom gland directly into its prey. This toxin contains a variety of components, including a new type of peptide, named xibalbine, after its crustacean producer. Some of these xibalbines contain a characteristic structural element that is familiar from other toxins, especially those produced by spiders: several amino acids (cysteines) of the peptide are bound to each other in such a manner that they form a knot-like structure. This in turn makes the peptides resistant to enzymes, heat and extreme pH values. Such knottins often act as neurotoxins, interacting with ion channels and paralyzing prey – an effect that has also been proposed for some xibalbines.

The study shows that all the xibalbine peptides tested by the cooperation partners' doctoral students – and in particular Xib1, Xib2 and Xib13 – effectively inhibit potassium channels in mammalian systems

This inhibition is greatly important when it comes to developing drugs for a range of neurological diseases, including epilepsy,"

Dr. Björn von Reumont, Researcher, Goethe University Frankfurt

Xib1 and Xib13 also exhibit the ability to inhibit voltage-gated sodium channels, such as those found in nerve or heart muscle cells. In addition, in the sensory neurons of higher mammals, the two peptides can activate two proteins – kinases PKA-II and ERK1/2 – involved in signal transduction. The latter suggests that they are involved in pain sensitization, which opens up new approaches in pain therapy.

Although the xibalbines' bioactivity is exemplary of the untapped potential of marine biodiversity, the production of drugs from animal venoms is a complex and time-consuming process. "Finding suitable candidates and comprehensively characterizing their effects, thus laying the foundation for safe and effective drugs, is only possible today in a large interdisciplinary team, as in the case of our study," says von Reumont.

Making matters more difficult is the fact that time is of the essence for the remipedes. Their habitat is under serious threat from the construction of the Tren Maya intercity railroad network, which cuts straight through the Yucatan Peninsula. "The cenotes are a highly sensitive ecosystem," explains von Reumont, who, as an experienced cave diver, has collected remipedes in Yucatan during several cave diving expeditions. "Our study highlights the importance of protecting biodiversity, not only for its ecological significance, but also for potential substances that could be of crucial importance to us humans."

Source:
Journal reference:

Pinheiro-Junior, E.L., et al. (2024). Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling. BMC Biology. doi.org/10.1186/s12915-024-01955-5.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers discover key biochemical mechanism in Huntington's disease development