Is Coffee Good for the Gut?

NewsGuard 100/100 Score

According to the scientific literature, drinking coffee is beneficial for the gut health. It helps improve bowel movement by increasing the motility of smooth muscle in the gastrointestinal tract.

Image Credit: ImYanis / Shutterstock
Image Credit: ImYanis / Shutterstock

How do gut microbiota affects normal physiological functions?

There has been an ample of evidence claiming that drinking coffee can improve the gut microbiome and maintain metabolism. In human body, about 10 trillion microorganisms including bacteria, viruses, fungi, and protozoa and 1,000 microbial strains are present in the gastrointestinal (GI) tract.

Intestinal microbiome, anatomy of human digestive system, 3D illustration. Image Credit: Kateryna Kon / Shutterstock
Intestinal microbiome, anatomy of human digestive system, 3D illustration. Image Credit: Kateryna Kon / Shutterstock

The entire population of GI microorganisms is collectively known as the gut microbiota. In normal physiological condition, the gut microbiota plays important roles in regulating a wide variety of cellular functions, including energy metabolism, immune response, and neuroendocrine response.

A growing pool of evidence suggests that any alteration in the GI microbiome content (dysbiosis) can lead to serious health complications, such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, inflammatory bowel disease, cardiovascular disease, diabetes mellitus, obesity, and cancer.

The gut microbiota facilitates the absorption of food nutrients, synthesis of enzymes, and production of short-chain fatty acids (SCFAs). The types and quantity of SCFA produced by the gut microbiota determine the overall functional outcome of many physiological processes through the modulation of anti-inflammatory and neuroendocrine responses.

How coffee affects gut health?

Coffee is one of the most commonly consumed beverages globally. It comprises more than 1500 active ingredients, such as caffeine, minerals, phenolic polymers, polysaccharides, and chlorogenic acid.

Several studies have claimed that consumption of coffee helps improve the bowel movement. As a postoperative care for constipation, coffee intake has been shown to significantly reduce the time to first bowel movement, first flatus, and solid diet tolerance.

It has also been shown that mannooligosaccharides extracted from spent coffee grounds can stimulate the growth of beneficial gut bacteria and increase the production of SCFAs. However, spent coffee grounds also contain 5-(hydroxymethyl) furfural, furfural, and poly phenols, which may inhibit beneficial gut microorganisms and prevent the beneficial effects of mannoligosaccharides.

A recent study on rats has shown that consumption of coffee for three days causes an increase in the rate of smooth muscle contraction in the small intestine and colon. Moreover, coffee intake suppresses the growth of bacteria and other microorganisms in the fecal matter in a dose-dependent manner. However, further studies are needed to evaluate whether the changes in bacterial content in the fecal matter is favorable for the beneficial bacteria or harmful bacteria.

Most interestingly, the study has found that the observed effects of regular coffee on gut function and gut microbiota are similar to the effects caused by consumption of caffeine-free coffee. This indicates that caffeine is not the causative ingredient in coffee responsible for the aforementioned benefits.  

In contrast to the studies claiming gut benefits of coffee, there is evidence showing that consumption of coffee does not improve the altered profile of gram-positive and gram-negative bacteria in mice with metabolic syndrome. However, coffee intake has been shown to reduce the risk of several metabolic disorders.

Moreover, two major ingredients of coffee, caffeine and chlorogenic acid, have been shown to reverse liver pathology in obese, diabetic mice without altering the obese status.

Although coffee intake fails to repair the gut dysbiosis, the study has found that coffee intake for 16 weeks significantly changes the percentage of certain bacteria, including Blautia, Coprococcus, and Prevotella.

In addition, both caffeine and chlorogenic acid have been shown to partially restore the plasma level of SCFAs. These effects of coffee ingredients may be attributed to improved liver inflammation in mice with metabolic syndrome.

Sources

Further Reading

Last Updated: Feb 10, 2020

Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2020, February 10). Is Coffee Good for the Gut?. News-Medical. Retrieved on April 28, 2024 from https://www.news-medical.net/health/Is-Coffee-Good-for-the-Gut.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "Is Coffee Good for the Gut?". News-Medical. 28 April 2024. <https://www.news-medical.net/health/Is-Coffee-Good-for-the-Gut.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "Is Coffee Good for the Gut?". News-Medical. https://www.news-medical.net/health/Is-Coffee-Good-for-the-Gut.aspx. (accessed April 28, 2024).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2020. Is Coffee Good for the Gut?. News-Medical, viewed 28 April 2024, https://www.news-medical.net/health/Is-Coffee-Good-for-the-Gut.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Gut microbiome shows no clear link to cognitive impairments in Parkinson's disease