Salinispora tropica marine bacterium points to new ways to treat human diseases

NewsGuard 100/100 Score

An unexpected discovery in marine biomedical laboratories at Scripps Institution of Oceanography at UC San Diego has led to new, key information about the fundamental biological processes inside a marine organism that creates a natural product currently being tested to treat cancer in humans.

The finding could lead to new applications of the natural product in treating human diseases.

A research team led by Bradley Moore, a professor with UCSD's Scripps Oceanography Center for Marine Biotechnology and Biomedicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, and postdoctoral researcher Alessandra Eustáquio, along with their colleagues at the Salk Institute for Biological Studies, discovered an enzyme called SalL inside Salinispora tropica, a promising marine bacterium identified in 1991 by Scripps researchers.

As they describe in the most recent issue of Nature Chemical Biology, the researchers also identified a novel process—a “pathway”—for the way the marine bacterium incorporates a chlorine atom, the key ingredient for triggering its potent cancer-fighting natural product. Previously known methods for activating chlorine were processed through oxygen-based approaches. The new method, on the other hand, employs a substitution strategy that uses non-oxidized chlorine as it is found in nature, as with common table salt.

“This was a totally unexpected pathway,” said Moore. “There are well over 2,000 chlorinated natural products and this is the first example in which chlorine is assimilated by this kind of pathway,” said Moore.

The Salinispora derivative “salinosporamide A” is currently in phase I human clinical trials for the treatment of multiple myeloma and other cancers. A team led by Moore and Scripps' Daniel Udwary solved the genome of S. tropica in June, an achievement that helped pave the way for the new discoveries.

Moore believes the discoveries provide a new “road map” for furthering S. tropica's potential for drug development. Knowing the pathway of how the natural product is made biologically may give biotechnology and pharmaceutical scientists the ability to manipulate key molecules to engineer new versions of Salinispora-derived drugs. Genetic engineering may allow the development of second-generation compounds that can't be found in nature.

“It's possible that drug companies could manufacture this type of drug in greater quantities now that we know how nature makes it,” said Moore.

At this point it is unclear how pervasively SalL and its unique biological activation pathway exist in the ocean environment. Chlorine is a major component of seawater, and, according to Moore, a fundamental component of Salinispora's disease-inhibiting abilities. Salinosporamide A, for example, is 500 times more potent than its chlorine-free analog salinosporamide B.

“The chlorine atom in salinosporamide A is key to the drug's irreversible binding to its biological target and one of the reasons the drug is so effective against cancer,” said Moore.

According to Eustáquio, finding the enzyme and its new pathway also carries implications for understanding evolutionary developments, including clues for how and why related enzymes are activated in different ways.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
NCCN 2024 Annual Conference focuses on practical applications for improving cancer care