Regulating hematopoietic stem cell homeostasis and leukemogenesis

In the April 15th issue of G&D, Dr. Richard Flavell (Yale University) and colleagues identify the c-Cbl protein as a critical repressor of hematopoietic stem cell (HSC) self-renewal.

In addition to establishing a key role for protein ubiquitylation in HSC development, this finding posits c-Cbl as a potential target in research into stem cell engineering as well as cell-based leukemia treatments.

Dr. Flavell describes the work as elucidating “a novel dimension in our understanding the self-renewal of Hematopoietic stem cells."

Like all stem cell populations, HSC reply upon asymmetric cell division to generate two different daughter cells: one future stem cell, and another cell that will further differentiate into a more specialized cell type. Thus, a balance is struck between the production of new cell types and the renewal of the stem cell pool. However, imbalances between HSC self-renewal and differentiation can lead to hematologic malignancies like leukemia.

Dr. Flavell's group discovered that the E3 ubiquitin ligase, c-Cbl, suppresses HSC self-renewal. The researchers generated transgenic mice deficient in c-Cbl, and demonstrated that these c-Cbl-mutant mice display an increased number of HSCs.

Lead author, Dr. Chozhavendan Rathinam, is confident that "our findings may facilitate the expansion and manipulation of hematopoietic stem cells for tissue engineering and stem cell based therapies."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Sickle cell trait increases risk of blood clots across diverse ancestries