BlueGenics aims to discover new drugs from deep sea to combat osteoporosis

NewsGuard 100/100 Score

Searching for substances from the deep sea to combat osteoporosis and other human common diseases is one of the objectives of the new European research project "BlueGenics" which has received funding of EUR 6 million from the European Commission. Specifically, the international research team, coordinated by Professor Dr. Werner E.G. M-ller from the Institute of Physiological Chemistry of the Mainz University Medical Center, intends to identify and to utilize genetic blueprints from marine organisms, including deep-sea sponges and bacteria, for the production of biomedically relevant substances. The novel research approach provided by this research team will allow the sustainable use of marine resources without negative impact on biodiversity.

"As we can see, by funding this joint large-scale research project the European Union has recognized the need to make every effort to develop new and effective drugs for the prevention and treatment of common diseases, for which efficient therapies are still missing, such as osteoporosis," said the coordinator of the BlueGenics project, Professor Dr. Werner E.G. M-ller. "I am extremely glad that this project has now been successfully started. BlueGenics brings together leading researchers from nine countries. The unique and complementary expertise provided by these and their advanced equipment provide an excellent basis to reach the ambitious objectives of this project," M-ller continued.

The innovative research concept of BlueGenics offers the chance of achieving extraordinary success as seen by the European Commission. The international team of scientists led by the molecular biologist Professor Dr. Werner E.G. M-ller together with NanotecMARIN GmbH, a research-based spin-off company at Mainz University, headed by Professor Dr. Heinz C. Schr-der and Professor Dr. Xiaohong Wang, both also from the Institute of Physiological Chemistry at JGU, have developed a research strategy that aims to combine research on biomedical-relevant genes from marine animals and bacteria with the most advanced chemical synthesis and structure analysis techniques. The team led by M-ller will use this research approach to develop substances up to pre-clinical testing. In this project, the Mainz team will primarily focus on substances that could be used for prophylaxis and/or therapy of osteoporosis as well as on new antimicrobial peptides and compounds with neuroprotective activity.

M-ller and his research team have already demonstrated that bioactive substances can be synthesized by applying recombinant molecular biology techniques. They were able to demonstrate that defensin, a toxin and defense peptide produced by sponges, is bioactive if produced in a recombinant way. "This paves the way for exploiting the large treasure of genetic blueprints present in the world-wide oceans for human benefit," M-ller said.

The European project BlueGenics brings together the leading researchers from the areas of marine genomics, biosynthesis, and chemical structure analysis. Participants of this project coordinated by Professor Dr. Werner E.G. M-ller at the Mainz University Medical Center are 16 research institutions and industrial companies from Germany, France, Croatia, Portugal, Iceland, Italy, Sweden, UK, and China. According to Professor Dr. Dr. Reinhard Urban, Chief Scientific Officer of the University Medical Center, the EU is well advised to fund projects like BlueGenics: "We are practically just at the beginning to exploit marine resources, especially those from the little-explored deep sea, for biomedical purposes. However, it is now already foreseeable that research on deep-sea organisms is likely to produce remarkable results for our society."

BLUE BIOTECHNOLOGY

The so-called Blue Biotechnology is primarily concerned with the biotechnological use of marine organisms. Of particular interest are sponges and deep-sea bacteria that live under extreme conditions in more than 1,000 meters below the sea level. These organisms are considered to be a source of novel valuable substances that can be used in biotechnology and biomedicine. While the majority of the known enzymes break down on exposure to high temperatures, the biocatalysts produced by deep-sea bacteria remain active under extreme conditions, even in the vicinity of marine hydrothermal vents.

What makes blue technology so interesting for research is the fact that even obviously simple organisms, such as marine sponges, are remarkably similar to humans in many ways. The evolutionary relationship between these oldest animals and human beings is surprisingly close, as the Mainz research team has demonstrated in recent years by means of molecular biological techniques. In addition, these organisms produce a variety of substances that have evolved a high degree of specificity and effectiveness during the course of evolution, and hence have attracted increasing interest with regard to their possible therapeutic use in humans, for example for the treatment of viral infections.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Fenugreek seeds: A superfood for health and wellness, says new review