Study demonstrates successful use of fat cells to support prolonged growth of human hematopoietic stem cells

NewsGuard 100/100 Score

Fat Cells Prolong Survival of Human Stem Cells Grown In Vitro

One of the main obstacles that stands in the way of using human hematopoietic stem cells (hHSCs) to treat a variety of diseases is the difficulty growing them in culture—they quickly die or differentiate into other cell types. A series of experiments that demonstrate the successful use of fat cells as part of a feeder layer to support prolonged growth of hHSCs in culture is reported in an article in BioResearch Open Access, a bimonthly peer-reviewed open access journal from Mary Ann Liebert, Inc., publishers (https://www.liebertpub.com). The article is available on the BioResearch Open Access website (https://www.liebertpub.com/biores).
 
In the article "Extending Human Hematopoietic Stem Cell Survival In Vitro with Adipocytes" (http://online.liebertpub.com/doi/full/10.1089/biores.2013.0006) Dean Liang Glettig and David Kaplan, Tufts University, Medford, MA included adipocytes (fat cells) in varying amounts and locations in the feeder layers of hHSCs being grown in the laboratory. They varied the concentrations of different cell types including adipocytes in the feeder layer, comparing different amounts of adipocytes, and evaluated the effect of direct cell-to-cell contact between the hHSCs and the adipocytes in the feeder layer on the survival rate of the hHSCs.

"The ability to prolong hHSC culture in vitro not only benefits basic stem cell research, it is also an important step towards developing advanced cell therapies for future clinical use," says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study reveals potential cellular mechanism behind cognitive decline in Alzheimer's