Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation

Bone homeostasis requires precise balance between deposition of new bone by osteoblasts and resorption of old bone by osteoclasts. Bone diseases, including osteoporosis and rheumatoid arthritis, are the result of increased osteoclast activity and formation, which allows bone resorption to outpace deposition. In this issue of the Journal of Clinical Investigation, Brendan Boyce and colleagues at the University of Rochester evaluated the role of TNF receptor-associated receptor 3 (TRAF3) in promoting osteoclast formation. Mice lacking TRAF3 in osteoclast precursor cells had mild osteoporosis that was associated with increased osteoclast formation.

The authors found that chloroquine treatment increased TRAF3 in osteoclast precursor cells and limited osteoclast generation. Furthermore, treatment of mouse models of osteoporosis with chloroquine inhibited osteoclast formation. These studies implicate that therapies aimed at increasing TRAF3 in osteoclast precursor cells may limit bone loss for those with bone diseases.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Deep learning for early osteoporosis risk prediction