Researchers reveal how migrating tumour cells produce protein that helps set up home in bones

NewsGuard 100/100 Score

Migrating tumour cells produce a protein that aids them to set up home in bones, as University of Freiburg researchers show

Cancer cells that migrate to the bone acquire a unique trait: They start to express the protein cathepsin K. Researchers from the University of Freiburg and the BIOSS Centre for Biological Signalling Studies have now solved why it is important for the migrating cells to produce this protein. Polymer chemist Prof. Dr. Prasad Shastri and the pharmacist Jon Christensen discovered that cathepsin K activates another protein, which helps the cancer cells to alter their microenvironment so that they are able to develop into tumours. The researchers published their findings in a paper in the open access journal BMC Research Notes.

If a tumour develops metastases, the chances of the patient's survival will be severely diminished. Cancer cells that leave the primary tumour, travel through the body, and set up home in distal organs such as lungs and bones start to express cathepsin K. Cathepsin K is primarily found only in the bone and is secreted by osteoclasts. These cells resorb bone tissue to maintain, repair, and remodel the bone. Why it is important for migrating cancer cells to produce cathepsin K has remained a mystery, however.

Shastri and Christensen found out that the production of cathepsin K by migrating cancer cells might promote their ability to survive in the bone environment. In cell cultures, cathepsin K activated matrixmetalloprotease-9 (MMP-9), one of the key regulators of tumour development. MMP-9 can digest the bone matrix thereby allowing the arriving cancer cells to adapt and survive in their new environment. Also, MMP-9 activates certain factors that promote new blood vessel formation, which is necessary for bringing nourishment to the tumour cells. Therefore, when cancer cells arrive in the bone, they have many tools to alter their microenvironment and develop into tumours. "Further studies are, however, needed to see how this interplay between cathepsin K and MMP-9 actually plays out in vivo and how it promotes tumour aggressiveness and metastasis," said Shastri. "Nevertheless, this novel protease network paradigm might be explored as a therapeutic target in future."

Prasad Shastri is the Director of the Institute of Macromolecular Chemistry and core member of the cluster of excellence BIOSS Centre for Biological Signalling Studies of the University of Freiburg. Jon Christensen is a graduate student at BIOSS Centre for Biological Signalling Studies and a member of Shastri's research group at the Institute of Macromolecular Chemistry.

Source: University of Freiburg

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
DASH diet may lower the risk of cardiovascular disease in breast cancer survivors