Experimental drug shows promise in mice with multiple sclerosis

NewsGuard 100/100 Score

An experimental drug originally identified in a National Cancer Institute library of chemical compounds as a potential therapy for brain and basal cell cancers improves the symptoms of mice with a form of the debilitating neurological disorder multiple sclerosis (MS), according to new research from NYU Langone Medical Center.

The experimental drug employed by the NYU Langone team of neuroscientists is called GANT61. It blocks the action of a key protein, Gli1, which is involved in so-called sonic hedgehog signaling, a biological pathway closely tied to neural stem cell development and the growth of some cancers, and whose signaling is raised in tissue samples taken from brain lesions in patients with MS.

A report describing the findings is being published in the journal Nature online Sept. 30.

In the study, mice with chemically damaged brain myelin were given daily doses of GANT61 for one month. Results showed that mice that received the drug had 50 percent more myelin at the end of treatment than did untreated mice. Myelin is the nerve-protecting sheath whose degradation is a principal cause of MS.

Moreover, the researchers say, they found that the GANT61-treated mice had an eightfold increase in the number of neural stem cells that migrated to myelin-damaged areas of the brain and eventually developed into myelin-producing oligodendrocytes. Untreated mice did not show this increase.

Clinically, the researchers report, drug-treated mice were able to recover from an initial bout of MS-like paralysis and leg weakness. Untreated mice, however, endured repeated bouts of leg and bladder weakness, symptoms similar to those experienced by people with the disorder.

According to senior study investigator James Salzer, MD, PhD, the experiments, which took six years to complete, are believed to be the first to demonstrate that neural stem cells, and not just early forms of oligodendrocytic cells, can be modified and recruited into myelin repair. Current treatments that target the immune system mostly slow the disease, which primarily targets myelin in the brain and spinal cord, but clinical experts have not yet been able to repair scarred and degraded myelin.

Salzer, a professor at NYU Langone and its Helen and Martin Kimmel Center for Stem Cell Biology and Druckenmiller Neuroscience Institute, says the team's latest findings are also the first to show that drugs targeted at sonic hedgehog, a pathway first discovered in the 1980s, can potentially treat neurological disorders, such as MS.

The team's latest research, he says, is also the first strong evidence that in multiple sclerosis, targeting part of the sonic hedgehog pathway has a fundamentally different effect than blocking the entire pathway, which in other experiments elsewhere did not produce any remyelination but instead halted oligodendrocyte maturation.

"Our study results suggest that a potential long-term strategy for treating multiple sclerosis would involve treatments that separately target both neural stem cells, to help turn them into mature oligodendrocytes, as well as young and immature oligodendrocytes to produce more myelin," says Salzer.

"Our findings also make clear that there is a resident population of adult neural stem cells that we can target and recruit to treat the disorder," says Salzer.

Lead study investigator Jayshree Samanta, MBBS, PhD, says the team plans further experiments, with dedicated funding from the National Multiple Sclerosis Society, to develop a better Gli1 inhibitor drug, for which Salzer, Samanta, Fishell, and NYU have obtained a patent.

Researchers say their latest findings and future projects affirm NYU Langone's commitment to studying the underlying causes and symptoms of MS, as well as developing treatments for the disorder. They also say their fundamental research into MS supports and underscores the integrated model of care employed at NYU Langone's Multiple Sclerosis Comprehensive Care Center.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research pinpoints key pathways in prostate cancer's vulnerability to ferroptosis