Researchers discover new warning system in the immune defense

NewsGuard 100/100 Score

Researchers at Linköping University in Sweden have discovered a previously unknown warning system that contributes to the body's immune system. Mitochondria in the white blood cells secrete a web of DNA fibers that raises the alarm. The results have been published in the scientific journal PNAS, and may lead to increased knowledge about autoinflammatory diseases and cancer.

White blood cells are major components of the body's immune defense, and the research group has shown that several types of these cells react against small DNA fragments that are similar to the DNA from bacteria and viruses. The white blood cells spray out a web consisting of mitochondrial DNA (mtDNA) strands. Mitochondria are present in all cells and normally produce the energy needed by the cell, by burning sugar and fat to form water and carbon dioxide.

The web that the mitochondria release sends signals to the surrounding cells that the body is under attack, and cause other white blood cells to release a signal substance known as "interferon type 1". This substance helps the immune system to combat the infection.

Previous studies have shown that the level of mtDNA in the blood can be elevated after certain inflammatory diseases and after some surgical traumas.

"We show that the white blood cells in the immune system can release mtDNA outside the cells in an active process in response to infectious agents such as bacteria and viruses. The discovery raises the possibility of further studies in which we will try to reduce the release of mtDNA, and in this way reduce the inflammation that it causes," explains Björn Ingelsson, researcher and associate lecturer at the Department of Clinical and Experimental Medicine at Linköping University. He has conducted the research together with Professor Emeritus Anders Rosén and other co-workers.

Other types of web formed by white blood cells in the immune system (known as "neutrophils") have been previously known. These cells release meshes coated with antibacterial proteins. However, the formation of the newly discovered mtDNA webs differs fundamentally from that of the other types of web. The researchers have shown that the mtDNA webs are activated within a couple of minutes, which is faster than the neutrophil-based meshes. The latter also lack the signal function that the mtDNA webs have. Further, the mtDNA webs survive in the blood longer before being dissolved.

But surely this is a positive process in which the immune defense works to remove the intruding bacteria or viruses?

"Well, of course it's positive that the defense mechanisms are activated. But remember that you can have too much of a good thing. If an unintentional secretion of mtDNA occurs, or if the secreted mtDNA is not removed from the blood, undesired inflammation may occur, and it is this side-effect we want to prevent," says Björn Ingelsson.

High levels of interferon type 1, the signal substance activated by the mtDNA webs, occur in several autoimmune diseases and several types of cancer. The researchers believe that it may be possible to quantify the secreted mtDNA molecules and interpret the warning signals, and in this way understand these diseases better.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New AI tool 'TORCH' successfully identifies cancer origins in unknown primary cases