Researchers develop fully automated end-to-end blood testing device

NewsGuard 100/100 Score

Researchers from the Biomedical Engineering Department at Rutgers University have developed an end-to-end blood testing device that integrates robotic phlebotomy with downstream sample processing. This platform device performs blood draws and provides diagnostic results in a fully automated fashion at the point-of-care. By reducing turnaround times, the device has the potential to expedite hospital work-flow, allowing practitioners to devote more time to treating patients. The research has been published in a paper in the June 2018 issue of TECHNOLOGY.

Diagnostic blood testing is the most commonly performed clinical procedure in the world and influences the majority of medical decisions made in hospital and laboratory settings. However, manual blood draw success rates are dependent on clinician skill and patient physiology, and results are generated almost exclusively in centralized labs from large-volume samples using labor-intensive analytical techniques.

To address these issues, the team of researchers at Rutgers University created a device that includes an image-guided venipuncture robot, to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. In the paper, results are presented on a white blood cell assay, using a blood mimicking fluid spiked with fluorescent microbeads. Studies were conducted on the integrated device -- from blood draw to analysis -- using blood vessel phantoms, demonstrating both high accuracy and repeatability of the cannulation and resulting white blood cell assay.

"This device represents the holy grail in blood testing technology," stated Martin Yarmush, M.D., Ph.D., the paper's senior author. "Integrating miniaturized robotic and microfluidic systems, this technology combines the breadth and accuracy of traditional laboratory testing with the speed and convenience of point-of-care testing."

"When designing the system, our focus was on creating a modular and expandable device", stated Max Balter, Ph.D., first author of the paper. "With our relatively simple chip design and analysis techniques, the device can be extended to incorporate a broader panel of assays in the future".

Source: http://www.worldscientific.com/page/pressroom/2018-06-05-01

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New RNA therapy zilebesiran shows promise in lowering blood pressure