Researchers develop large-scale window material for high-efficiency PM2.5 capture

NewsGuard 100/100 Score

Tuning the light intensity and reducing the concentration of atmospheric particulate matter (PM) in commercial buildings are both crucial to keep indoor people comfortable and healthy. While, the intelligent smart windows fabricated on the flexible transparent electrodes can change its transmittance in response to electrical or thermal stimulus to tune the light intensity of commercial buildings to maintain thermal comfort. Up to now, it is still a significant challenge to fabricate the large-scale flexible transparent smart window for high-efficiency PM2.5 capture.

Recently, a research team led by Prof. YU Shuhong from the University of Science and Technology of China (USTC) develops a simple solution based process to fabricate large-area Ag-nylon flexible transparent windows for high-efficiency PM2.5 capture.

It takes only about 15.03 dollars and 20 minutes to fabricate 7.5 m2 Ag-nylon flexible transparent windows without any modification showing a sheet resistance of as low as 8.87 ? sq-1 and optical transmittance of 86.05%.

The obtained Ag-nylon mesh serves not only to turn the indoor light intensity as thermochromic smart windows after uniformly coated with thermochromic dye but also to purify indoor air as high-efficiency PM2.5 filter.

The time-dependent temperature profiles and uniform heat distribution show that the obtained Ag-nylon electrodes can be used as an ideal intelligent thermochromic smart window with excellent mechanical stability whose performance remains stable even after 10,000 bending cycles of bending test with a minimum bending radius of 2.0 mm and 1,000 cycles of stretching deformation with mechanical strain as high as 10%.

In addition, the Ag-nylon electrodes can be constructed for PM filter showing a removal efficiency of 99.65% and maintaining stable even after 100 cycles of PM filtration and cleaning process.

The success of the present design strategy provides more choices in developing next-generation flexible transparent smart windows and air pollution filters.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Bladder and gut fermentation syndromes: Uncommon disorders with significant implications