Study measures antioxidant levels in edible insects

NewsGuard 100/100 Score

For the first time, a study has measured antioxidant levels in commercially available edible insects.

Sure, most of them don't have six legs - and scorpions, spiders, and centipedes aren't even insects. But for open-minded health freaks, it's good news: crickets pack 75% the antioxidant power of fresh OJ, and silkworm fat twice that of olive oil.

And while even ladybugs fart, insects have a tiny land, water and carbon footprint compared with livestock - so anything that encourages insect eating is good news for the planet, too.

Look who's come crawling back

Faced with eating ourselves and the planet to death, the West has begun reluctantly to consider creepy crawlies as a more sustainable alternative to meat and animal products.

At least 2 billion people - a quarter of the world's population - regularly eat insects. The rest of us will need a bit more encouragement."

Prof. Mauro Serafini, lead author of the study published in Frontiers in Nutrition

Providing selfish and immediate incentives could help consumers to make the environmentally friendly choice, says Serafini. Taste and image are key - but for many, health is also an incentive.

"Edible insects are an excellent source of protein, polyunsaturated fatty acids, minerals, vitamins and fiber. But until now, nobody had compared them with classical functional foods such as olive oil or orange juice in terms of antioxidant activity."

Antioxidant activity is that free-radical scavenging ability that typically designates a 'superfood' - although this poorly defined term is eschewed by researchers, says Serafini.

The study

The researchers tested a range of commercially available edible insects and invertebrates, using various measures of antioxidant activity.

Inedible parts like wings and stings were removed, then the insects were ground and two parts extracted for each species: the fat, and whatever would dissolve in water.

Each extract was then tested for its antioxidant content and activity.

"For perspective, using the same setup we tested the antioxidant capacity of fresh orange juice and olive oil - functional foods that are known to exert antioxidant effects in humans," Serafini explains.

The first insect antioxidant rankings

Water-soluble extracts of grasshoppers, silkworms and crickets displayed the highest values of antioxidant capacity - fivefold higher than fresh orange juice - while giant cicada, giant water bugs, black tarantula and black scorpions showed negligible values.

"There's a clear trend: the vegetarians have markedly higher antioxidant capacity," notes Serafini.

Note that these comparisons are for the dry, fat-free insect dust - a tad tougher to swallow than fresh OJ. Even so, some quick math shows that at the same dilution (88% water), grasshoppers and silkworms would have about 75% the antioxidant activity of OJ.

Interestingly, the total content of polyphenols - the major source of plant-derived antioxidant activity - followed a similar pattern across species, but was far lower in all insects compared to OJ.

"These results suggest that besides polyphenols, the antioxidant capacity of insects also depends on other, as yet unknown compounds," Serafini adds.

The results for the insect fat were similarly impressive.

"Fat from giant cicadas and silkworms showed twice the antioxidant activity of olive oil, while black tarantula, palm worm and black ants are placed in the bottom of the ranking."

Bioavailability

The group's key message is: edible insects like grasshoppers and silkworms are a rich source of antioxidants.

"A high content of antioxidant in the food matrix is a primary requisite for a first screening of antioxidant potentiality of novel foods, so these are promising results."

But the questions remains: what are these antioxidants, and do they work in humans?

"The in vivo efficiency of antioxidant-rich food is highly dependent on bioavailability and the presence of an ongoing oxidative stress. So as well as identifying other antioxidant compounds in insects, we need tailored intervention studies to clarify their antioxidant effects in humans.

"In the future, we might also adapt dietary regimens for insect rearing in order to increase their antioxidant content for animal or human consumption."

Source:
Journal reference:

Mattia, C.D. et al. (2019) Antioxidant Activities in vitro of Water and Liposoluble Extracts Obtained by Different Species of Edible Insects and Invertebrates. Frontiers in Nutrition. doi.org/10.3389/fnut.2019.00106.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The whey to go: Researchers unlock the potential of whey-derived proteins for cancer prevention