Engineers invent plant-based spray that could be used in N95 mask filters

NewsGuard 100/100 Score

Engineers have invented a way to spray extremely thin wires made of a plant-based material that could be used in N95 mask filters, devices that harvest energy for electricity, and potentially the creation of human organs.

The method involves spraying methylcellulose, a renewable plastic material derived from plant cellulose, on 3D-printed and other objects ranging from electronics to plants, according to a Rutgers-led study in the journal Materials Horizons.

This could be the first step towards 3D manufacturing of organs with the same kinds of amazing properties as those seen in nature. In the nearer term, N95 masks are in demand as personal protective equipment during the COVID-19 pandemic, and our spray method could add another level of capture to make filters more effective. Electronics like LEDs and energy harvesters also could similarly benefit."

Jonathan P. Singer, Study Senior Authorand Assistant Professor, Department of Mechanical and Aerospace Engineering, School of Engineering, Rutgers University-New Brunswick

Thin wires (nanowires) made of soft matter have many applications, including the cilia that keep our lungs clean and the setae (bristly structures) that allow geckos to grip walls.

Such wires have also been used in small triboelectric energy harvesters, with future examples possibly including strips laminated on shoes to charge a cell phone and a door handle sensor that turns on an alarm.

While people have known how to create nanowires since the advent of cotton candy melt spinners, controlling the process has always been limited. The barrier has been the inability to spray instead of spin such wires.

Singer's Hybrid Micro/Nanomanufacturing Laboratory, in collaboration with engineers at Binghamton University, revealed the fundamental physics to create such sprays. With methylcellulose, they have created "forests" and foams of nanowires that can be coated on 3D objects. They also demonstrated that gold nanoparticles could be embedded in wires for optical sensing and coloration.

Source:
Journal reference:

Lei, L., et al. (2020) Homogeneous gelation leads to nanowire forests in the transition between electrospray and electrospinning. Materials Horizons. doi.org/10.1039/d0mh00872a.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Gold nanoparticle adorned polymers boost infectious disease testing