New cyber-biological attack can trick biologists into generating dangerous toxins

NewsGuard 100/100 Score

An end-to-end cyber-biological attack, in which unwitting biologists may be tricked into generating dangerous toxins in their labs, has been discovered by Ben-Gurion University of the Negev cyber-researchers.

According to a new paper just published in Nature Biotechnology, it is currently believed that a criminal needs to have physical contact with a dangerous substance to produce and deliver it. However, malware could easily replace a short sub-string of the DNA on a bioengineer's computer so that they unintentionally create a toxin producing sequence.

"To regulate both intentional and unintentional generation of dangerous substances, most synthetic gene providers screen DNA orders which is currently the most effective line of defense against such attacks," says Rami Puzis, head of the BGU Complex Networks Analysis Lab, a member of the Department of Software and Information Systems Engineering and Cyber@BGU. California was the first state in 2020 to introduce gene purchase regulation legislation.

"However, outside the state, bioterrorists can buy dangerous DNA, from companies that do not screen the orders," Puzis says. "Unfortunately, the screening guidelines have not been adapted to reflect recent developments in synthetic biology and cyberwarfare."

A weakness in the U.S. Department of Health and Human Services (HHS) guidance for DNA providers allows screening protocols to be circumvented using a generic obfuscation procedure which makes it difficult for the screening software to detect the toxin producing DNA.

"Using this technique, our experiments revealed that that 16 out of 50 obfuscated DNA samples were not detected when screened according to the 'best-match' HHS guidelines," Puzis says.

The researchers also found that accessibility and automation of the synthetic gene engineering workflow, combined with insufficient cybersecurity controls, allow malware to interfere with biological processes within the victim's lab, closing the loop with the possibility of an exploit written into a DNA molecule.

The DNA injection attack demonstrates a significant new threat of malicious code altering biological processes. Although simpler attacks that may harm biological experiments exist, we've chosen to demonstrate a scenario that makes use of multiple weaknesses at three levels of the bioengineering workflow: software, biosecurity screening, and biological protocols.

This scenario highlights the opportunities for applying cybersecurity know-how in new contexts such as biosecurity and gene coding.

This attack scenario underscores the need to harden the synthetic DNA supply chain with protections against cyber-biological threats. To address these threats, we propose an improved screening algorithm that takes into account in vivo gene editing. We hope this paper sets the stage for robust, adversary resilient DNA sequence screening and cybersecurity-hardened synthetic gene production services when biosecurity screening will be enforced by local regulations worldwide."

Rami Puzis, Head of Complex Networks Analysis Lab, Ben-Gurion University of the Negev

Source:
Journal reference:

Puzis, R., et al. (2020) Increased cyber-biosecurity for DNA synthesis. Nature Biotechnology. doi.org/10.1038/s41587-020-00761-y.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Expanding research and clinical options for children with cancer