Study reveals how neural systems process and store information

Research breakthrough in understanding how neural systems process and store information.

A team of scientists from the University of Exeter and the University of Auckland have made a breakthrough in the quest to better understand how neural systems are able to process and store information.

The researchers, including lead author Dr Kyle Wedgwood from the University of Exeter's Living Systems Institute, have made a significant discovery in how a single cell can store electrical patterns, similar to memories.

They compared sophisticated mathematical modelling to lab-based experiments to determine how different parameters, such as how long it takes for neuronal signals to be processed and how sensitive a cell is to external signals, affect how neural systems encode information.

The research team found that a single neuron is able to select between different patterns, dependent on the properties of each individual stimulus.

The research offers a new step towards developing a greater understanding of how information is encoded and stored in the brain, which could open up fresh insights into the cause and treatment of conditions such as dementia.

The research is published in the Journal of the Royal Society Interface on Wednesday, April 14th 2021.

This work highlights how mathematical analysis and wet-lab experiments can be closely integrated to shed new light on fundamental problems in neuroscience."

Dr Kyle Wedgwood, Study Lead Author, Living Systems Institute, University of Exeter

"That the theoretical predictions were so readily confirmed in experiments gives us great confidence in the mathematical approach as a tool for understanding how individual cells store patterns of activity. In the long run, we hope that this is the first step to a better understanding of memory formation in neural networks."

According to Professor Krauskopf from the University of Auckland: "The research shows that a living neuron coupled to itself is able to sustain different patterns in response to a stimulus. This is an exciting first step towards understanding how groups of neurons are able to respond to external stimuli in a precise temporal manner.''

"Communication between neurons occurs over large distances. The communication delay associated with this plays an important role in shaping the overall response of a network. This insight is crucial to how neural systems encode memories, which is one of the most fundamental questions in neuroscience,'' adds Professor Tsaneva form the University of Exeter's Living Systems Institute.

Journal reference:

Wedgwood, K. C. A., et al. (2021) Robust spike timing in an excitable cell with delayed feedback. Journal of the Royal Society Interface.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
You might also like...
The Power of Solid-State Nuclear Magnetic Resonance in Biological Research