Study provides renewed hope for treating Alzheimer's and Parkinson's diseases

NewsGuard 100/100 Score

Nanosized molecules of a particular chemical element can inhibit the formation of plaque in the brain tissues. This new discovery by researchers at Umeå University, Sweden, in collaboration with researchers in Croatia and Lithuania, provides renewed hope for novel treatments of, for instance, Alzheimer's and Parkinson's disease in the long run.

This is indeed a very important step that may form the basis of new and efficient treatments of neurodegenerative diseases in the future."

Ludmilla Morozova-Roche, Professor, Umeå University

When proteins misfold they form insoluble fibrils called amyloids, which are involved in several serious diseases such as Alzheimer's and Parkinson's, Corino de Andrade's and the mad cow disease. Amyloid aggregates kill neuronal cells and form amyloid plaques in the brain tissues.

What researchers in Umeå in Sweden, Vilnius in Lithuania and Rijeka in Croatia have discovered is that a particular nanosized molecules can hinder the amyloid formation of pro-inflammatory protein S100A9. These molecules are able even to dissolve already pre-formed amyloids, which has been shown by using atomic force microscopy and fluorescence techniques. The molecules in question are nanosized polyoxoniobates, which is so-called polyoxometalate ions with a negative charge containing the chemical element niobium.

"Further research is needed before we can safely say that functioning treatments can be derived from this, but the results so far have proven very promising," says Ludmilla Morozova-Roche.

The researchers have been working with two different polyoxoniobate molecules, Nb10 and TiNb9. Both turned out to inhibit SI00A9 amyloids by forming ionic interactions with the positively charged patches on the protein surface, which are critical for amyloid self-assembly.

The polyoxoniobate molecules that have been studied are relatively chemically stable and water-soluble. The molecules are nanosized, which means that they are extremely small. These nanomolecules can also be of interest for other medical applications such as implants thanks to their high biocompatibility and stability.

At Umeå University, two research groups, from the Faculty of Medicine and the Department of Chemistry, have collaborated by addressing the issue from different angles and by applying a wide spectrum of biophysical and biochemical techniques and through molecular dynamics simulations.

Source:
Journal reference:

Chaudhary, H., et al. (2021) Polyoxometalates as Effective Nano-inhibitors of Amyloid Aggregation of Pro-inflammatory S100A9 Protein Involved in Neurodegenerative Diseases. ACS Applied Materials and Interfaces. doi.org/10.1021/acsami.1c04163.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Environmental stressors linked to fetal brain development challenges