Fruit fly provides insight into controlling carbs and fat

NewsGuard 100/100 Score

Incretins are hormones secreted by intestinal cells that regulate pancreatic insulin and glucagon to control sugar metabolism in mammals.

Although counterparts of insulin and glucagon have been identified in invertebrates, no hormone equivalent to incretin has been described. Now, researchers at the University of Tsukuba demonstrate that Neuropeptide F (NPF), a hormone produced by the midgut, performs this complex role in the fruit fly.

Life processes are orchestrated by diverse neuroendocrine feedback systems that retain fundamental similarities across the animal kingdom. In response to dietary sugars, incretins from the mammalian gut stimulate pancreatic cells to produce insulin and to suppress its counter-regulatory hormone glucagon. Together they antagonistically fine-tune sugar levels: insulin clears circulating carbohydrate and promotes fat storage while glucagon plays a modulatory role.

Having earlier discovered the reproductive function of NPF in the fruit fly, Drosophila melanogaster, the research team wondered about its role in other biological processes, particularly in energy homeostasis. Their research strategy included advanced genetic engineering to generate mutant flies of specific gene knockout strains (in which genetic expression has been inactivated or deleted) and knock-in strains (in which a one-for-one substitution of a genetic sequence has been created at a particular location). Cutting-edge laboratory techniques were used to reveal the genetic and molecular signaling pathways and underlying cellular mechanisms.

The researchers were able to demonstrate that NPF is secreted by intestinal endocrine cells in response to dietary sugar. It signals NPF receptor in the corpora cardiaca, a gland-like organ in insects, and stimulates insulin producing cells in the insect brain to suppress glucagon-like hormone while enhancing insulin-like peptide production. This increases the glucose level in the hemolymph (the circulatory fluid in the insect's body cavity) and promotes lipid accumulation in body fat.

Our investigations showed that loss of midgut NPF or disordered NPF/NPFR signaling in the fruit fly produced metabolic disorders similar to incretin loss in mammals, such as lipodystrophy (loss of healthy fat), hypoglycemia and hyperphagia (overfeeding). Significantly, although NPF is also produced by the brain, we proved that brain-derived NPF lacks this function, and that Drosophila NPF is structurally distinct from mammalian incretins. However, further research to investigate the role of NPF in other potential target tissues is necessary."

Ryusuke Niwa, Study Main Author and Professor, University of Tsukuba

This study highlights the underlying similarities of sugar-dependent metabolic processes between insects and mammals. Better understanding of the functional role of incretins may inform therapeutic strategies for medical disorders associated with their dysfunction such as obesity and type 2 diabetes.

Journal reference:

Yoshinari, Y., et al. (2021) The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nature Communications.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals significant health benefits of golden berries in diabetic and obese rats