Electroceutical research with widespread implications for regulating spleen function

NewsGuard 100/100 Score

An international team of researchers, led by University of Houston Cullen Endowed Professor of biomedical engineering Mario Romero-Ortega, has progressed electroceutical research for treatment of diseases including rheumatoid arthritis, colitis and sepsis. Romero-Ortega partnered with the ARC Centre of Excellence for Electromaterials Science (ACES) at the University of Wollongong in Australia.

The field of electroceuticals, where electrical stimulation is used to modify biological functions, has the potential to treat medical conditions with minimal invasion and side effects.

Published in the Nature Journal of Communications Biology, the work builds on previous studies when the team introduced the sutrode to the world just over a year ago. This graphene-based electrode is an electrical stimulation device that could replace the use of pharmaceuticals to treat a range of medical conditions. The sutrode, created using the fabrication technique known as fiber wet spinning, combines the electrical properties of an electrode with the mechanical properties of a suture.

The flexibility and superb sensitivity of the sutrode is allowing us to expand our understanding of how the nervous system controls main body organs, a critical step towards developing advanced therapies in bioelectronic medicines. Our collaborative work uncovered that the spleen is controlled by different terminal nerves, and that the sutrode can be used to control them, increasing the precision in which the function of this organ can be modulated."

Mario Romero-Ortega, University of Houston Cullen Endowed Professor of Biomedical Engineering

ACES director professor Gordon Wallace, a co-author on the paper, said the sutrode can be integrated with delicate neural systems to monitor neural activity.

"This work has widespread implications for regulating the function of the spleen, particularly the efficient regulation of the immune response for electroceutical treatment of range of diseases," said Wallace. "We have highlighted the ongoing need to develop systems with increased fidelity and spatial resolution. This will not only bring practical applications to the forefront but will enable the unattainable exploration of the human neural system."

The work also reveals the ability to simultaneously interrogate the four individual neural inputs into the spleen. This new technical and biological achievement will not only bring about practical applications, but also enable a previously unattainable exploration of the human neural system.

Source:
Journal reference:

Gonzalez-Gonzalez, M.A., et al. (2021) Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Communications Biology. doi.org/10.1038/s42003-021-02628-7.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Rising antibiotic resistance prompts shift to ecological research strategies in infection control