Scientists assemble carbon nanotubes in a new way to deliver cancer drugs

The science

Fundamental science often finds applications beyond its original focus. Previously, scientists found applications for small diameter carbon nanotube porins in energy technology. Nanotube porins are tubes with walls just molecules thick that act as pores through the walls of a thin membrane of liposomes, a type of tiny synthetic particle. Scientists have now assembled these nanotubes in a new way to deliver a cancer drug. The key is that the nanotubes pull the liposomes and the cancer cells together, allowing the membranes of the liposome and cancer to mix. This fusion process allows the drug to freely pass from the liposome to the cell. This results in very effective delivery of the anticancer drug doxorubicin, killing up to 90 percent of diseased cells.

The impact

This new pathway to deliver a drug directly into a cell interior addresses a long-standing challenge for medicine. It provides a new platform for understanding how to precisely deliver a wide range of drugs to individual cells. This understanding will potentially enhance the arsenal of innovative drug carriers for treatment of difficult to cure diseases. Another potential application includes more efficient methods for administering vaccines.

Summary

Carbon nanotube pores that create and maintain water "wires" could allow for rapid transport of protons in next-generation, artificial, proton-conducting membranes. These membranes could lead to applications such as more efficient fuel cells for powering cars and homes. Scientists have now used reconfigured versions of these same carbon nanotubes to directly introduce the anticancer drug doxorubicin from spherical sacs of phospholipid molecules (liposomes) through the cell plasma membrane into its interior.

Chemotherapy is an effective treatment for many cancer patients but delivering these drugs into unhealthy cells is still quite difficult. Doctors have used liposomes to deliver therapeutic drugs to diseased cells for some time. However, this process usually follows an inefficient delivery pathway, and the drugs are often destroyed before they get to the cells. This pathway is bypassed when small diameter, carbon nanotube porins are incorporated into liposomes full of the anticancer drug. These porins allow fusion of liposome and cell membranes, permitting direct delivery of the drug. Computational simulations revealed that tiny dimers of carbon nanotubes embedded in the exterior of the liposome membrane first tether the liposome and cell membranes together very closely. Mixing of the membranes induced by such proximity causes the cells and liposomes to blend. This leads to direct delivery of the drug, killing most of the cancer cells.

Source:
Journal reference:

Ho, N.T., et al. (2021) Membrane fusion and drug delivery with carbon nanotube porins. PNAS. doi.org/10.1073/pnas.2016974118.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
45 years of progress: Prevention and screening avert millions of cancer deaths