Microscopy techniques reveal a trail of destruction in bone collagen caused by high energy X-rays

A team of medical researchers at Charité has analyzed damage by focused high energetic X-rays in bone samples from fish and mammals at BESSY II. With a combination of microscopy techniques, the scientists could document the destruction of collagen fibers induced by electrons emitted from the mineral crystals. X-ray methods might impact bone samples when measured for a long time they conclude.

It has long been known that beyond a certain dose, X-rays damage living tissue, so there are clear medical indications for X-rays to keep radiation exposure to a minimum. In basic research on the properties and characteristics of mineralized tissue samples such as bone, researchers rely on increasingly powerful X-ray sources.

Bones from fish and mammals

Until now, the motto has actually been: more flux and higher energy is better because you can achieve greater depth of field and higher resolution with more intense X-rays."

Dr. Paul Zaslansky from Charité-Universitätsmedizin

Zaslansky and his team have now analyzed bone samples from fish and mammals at the MySpot beamline at BESSY II.

BESSY II generates a well-characterized broad-range of X-rays, precisely focused in an intermediate energy range which allows insights into the finest structures and even chemical and physical processes in materials. "Thanks to sensitive detectors and rather mild irradiation conditions in BESSY II as compared with harder X-ray synchrotron sources, we were able to demonstrate on our various bone samples that collagen fibres become damaged by the irradiation absorption in the mineral nanocrystals," Zaslansky summarises the results of the study.

Imaging the protein fibers

"We examined the samples under Second-Harmonic Generation laser-scanning microscopy for the imaging the protein fibers" explains first author Katrein Sauer, who is doing her doctorate in Zaslansky's team. Together with HZB expert Dr. Ivo Zizak, she irradiated bone samples from pike fish, pigs, cattle and mice with precisely calibrated X-ray light.

Trail of destruction

The beams left a trail of destruction that is clearly visible in the confocal and electron microscopy images. "The high-energy photons from the X-ray light trigger a cascade of electron excitations. Ionization of calcium and phosphorus in the mineral then damages proteins like collagen in bone," Sauer says. Break-down of collagen increases with the duration of the irradiation, but also shows up even with short irradiation at high flux.

Minimal doses for research on living materials

"X-ray methods are considered non-destructive in materials research, but at least for research on bone tissues this is not true," says Zaslansky. "We have to be more careful in basic medical research that we don't damage the very structures we actually want to analyze." So, as everywhere in medicine, and even when there are no living tissues and DNA to damage, it comes down to using a minimal dose to get the insights that reflect the material condition without causing damage.

Source:
Journal reference:

Sauer, K., et al. (2022) Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption. Nature Communications. doi.org/10.1038/s41467-022-34247-z.

Comments

  1. Susan Hawkins Susan Hawkins United States says:

    Thanks for your researching BessyII I honor the name & findings wish I known more, could of helped my parents through cancer radiation therapy.🍎

  2. April Walton April Walton United States says:

    Where exactly does that leave the millions of women like myself with breast cancer who had to undergo a month of daily radiation treatments and then have follow up care with more mammograms for the rest of our lives?  It is so sad that in order to treat breast cancer we will most likely all develop osteopenia or osteoporosis.

  3. anon ymous_user anon ymous_user Australia says:

    Does that mean CT scan is dangerous,? I just had one.

  4. Stanley Bolten Stanley Bolten United States says:

    What about damages caused by naked body scanners which is basically a x-ray machine for humans at airports, jails, and prisons?

    Every time somebody leaves jail to appear before a court hearing and back they are forced to go through a naked body scanner, every day there is a hearing. So does that mean inmates face tissue destruction and cancer???

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals unique evolution of knee bone in humans linked to upright walking