Molecular cargo released by cancer cells lays the groundwork for leukemia spread

Tiny packets of molecular cargo shed by cancer cells seed the foundations for metastasis at distant sites in the body.

Messenger particles released by leukemia cells use a chemical modification on their surface to navigate a route to distant sites, where they release molecular cargo that lays the groundwork for the blood cancer’s spread.

The findings, from mouse and cell experiments conducted at KAUST, help explain one of the drivers of cancer metastasis. Moreover, they highlight a potential therapeutic strategy for combatting the progression of leukemia.

The researchers showed that, just like leukemia cells themselves, tiny packets of molecular cargo that the cells shed from their surface depend on an adhesion molecule called E-selectin to bind and travel to tissues throughout the body.

These packets, known as exosomes, contain genetic material and signaling proteins that can promote cancer growth and survival through mediating modifications in the recipient cells. But they can only do so when surface proteins found on the exosomes have been decorated with a complex sugar molecule called sialyl Lewis X.

With this adornment, “leukemic exosomes act as a kind of blueprint to altering the foundations in a way that makes the environment more friendly for future metastasis,” says Ioannis Isaioglou, Ph.D. student and the first author of the study.

But without it, Isaioglou and his colleagues found, exosomes cannot deliver the messages needed to promote cancer-fueling gene expression in recipient cells — and an antibody drug that blocks E-selectin activity has the same effect. In mice, such a drug therapy helped to prevent leukemia cells from taking root in the spleen and spine, common sites of leukemic spread.

This points to the potential importance of focusing on exosomes as a way of reducing metastasis,” says cell biologist Jasmeen Merzaban, who led the research project as part of a collaboration with KAUST bioengineer Khaled Salama and microscopist Satoshi Habuchi.

Of note, there is currently a drug candidate called Uproleselan, a small molecule inhibitor of E-selectin, in late-stage clinical testing for patients with advanced leukemia. Earlier trial data looked promising, and the laboratory results from Merzaban’s team could help to explain why the drug seems to be helping patients live longer.

The study also documented a flexible feature of exosomes. Though long thought of as passive delivery vehicles, exosomes can actually change what contents they distribute depending on what molecules they bind to on target cells. “This is the first time research has shown exosomes to have such a dynamic role in transporting cancer communications to new locations,” Merzaban says.

That sophisticated function now deserves more attention, she says, given the critical roles that exosomes play in cancer progression.

Source:
Journal reference:

Isaioglou, I., et al. (2023) CD34+ HSPCs-derived exosomes contain dynamic cargo and promote their migration through functional binding with the homing receptor E-selectin. Frontiers in Cell and Developmental Biology. doi.org/10.3389/fcell.2023.1149912.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals a paradigm shift in the understanding of T-lineage acute lymphoblastic leukemia