Micronutrient deficiencies linked to gut microbiome shifts and antibiotic resistance

University of B.C. researchers have uncovered startling connections between micronutrient deficiencies and the composition of gut microbiomes in early life that could help explain why resistance to antibiotics has been rising across the globe.

The team investigated how deficiencies in crucial micronutrients such as vitamin A, B12, folate, iron, and zinc affected the community of bacteria, viruses, fungi and other microbes that live in the digestive system.

They discovered that these deficiencies led to significant shifts in the gut microbiome of mice-;most notably an alarming expansion of bacteria and fungi known to be opportunistic pathogens.

Importantly, mice with micronutrient deficiencies also exhibited a higher enrichment of genes that have been linked to antibiotic resistance.

Micronutrient deficiency has been an overlooked factor in the conversation about global antibiotic resistance. This is a significant discover

y, as it suggests that nutrient deficiencies can make the gut environment more conducive to the development of antibiotic resistance, which is a major global health concern."

Dr. Paula Littlejohn, postdoctoral research fellow with UBC's department of medical genetics and department of pediatrics, and the BC Children's Hospital Research Institute

Bacteria naturally possess these genes as a defense mechanism. Certain circumstances, such as antibiotic pressure or nutrient stress, cause an increase in these mechanisms. This poses a threat that could render many potent antibiotics ineffective and lead to a future where common infections could become deadly.

Antibiotic resistance is often attributed to overuse and misuse of antibiotics, but the work of Dr. Littlejohn and her UBC colleagues suggests that the 'hidden hunger' of micronutrient deficiencies is another important factor.

"Globally, around 340 million children under five suffer from multiple micronutrient deficiencies, which not only affect their growth but also significantly alter their gut microbiomes," said Dr. Littlejohn. "Our findings are particularly concerning as these children are often prescribed antibiotics for malnutrition-related illnesses. Ironically, their gut microbiome may be primed for antibiotic resistance due to the underlying micronutrient deficiencies."

The study, published this week in Nature Microbiology, offers critical insights into the far-reaching consequences of micronutrient deficiencies in early life. It underscores the need for comprehensive strategies to address undernutrition and its ripple effects on health. Addressing micronutrient deficiencies is about more than overcoming malnutrition, it may also be a critical step in fighting the global scourge of antibiotic resistance.

Source:
Journal reference:

Littlejohn, P. T., et al. (2023). Multiple micronutrient deficiencies in early life cause multi-kingdom alterations in the gut microbiome and intrinsic antibiotic resistance genes in mice. Nature Microbiology. doi.org/10.1038/s41564-023-01519-3.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Human gut microbiome: A source of new antibiotic peptides