Innovative perovskite X-ray detector enhances medical imaging capabilities

NewsGuard 100/100 Score

Technology (SIAT) of the Chinese Academy of Sciences, in collaboration with researchers at Central China Normal University, have developed a high-performance perovskite X-ray complementary metal-oxide-semiconductor (CMOS) detector for medical imaging.

The study was published in Nature Communications on Feb. 21.

X-ray imaging is vital for the diagnosis and treatment of cardiovascular and cancer diseases. Direct-conversion X-ray detectors made of semiconductor materials exhibit superior spatial and temporal resolution at lower radiation doses compared to indirect-conversion detectors made of scintillator materials. However, the currently available semiconductor materials, such as Si, a-Se, and CdZnTe/CdTe, are not ideal for general X-ray imaging due to their low X-ray absorption efficiency or high costs.

Perovskite is a promising alternative to conventional semiconductor materials. However, the feasibility of its combination with high-speed pixelated CMOS arrays is still unknown.

To address this issue, researchers developed a direct-conversion X-ray detector fabricated with a 300 μm thick inorganic CsPbBr3 perovskite film printed on a dedicated CMOS pixel array.

Researchers found that the screen-printed thick CsPbBr3 film has a high μτ product of 5.2×10-4 cm2 V–1, a high X-ray detection sensitivity of 15891 µC Gyair–1 cm–2, and a low dose detection limit of 321 nGyair s–1.

Experimental X-ray 2D imaging results showed that the proposed perovskite CMOS detector can achieve very high spatial resolution (5.0 lp mm-1, hardware limit is 6.0 lp mm-1) and low-dose (260 nGy) imaging performance.

Moreover, 3D CT imaging was also validated with the proposed detector at a fast signal readout speed of 300 fps.

"Our work shows the potential of lead halide perovskites in revolutionizing the development of state-of-the-art X-ray detectors with significantly enhanced spatial resolution, readout speed, and low-dose detection efficiency," said Prof. GE. "This paves the road for medical X-ray imaging applications to become gentler and safer in the future."

Journal reference:

Liu, Y., et al. (2024). Dynamic X-ray imaging with screen-printed perovskite CMOS array. Nature Communications.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Reinforcement feedback improves motor learning: The role of striatal oscillatory activity explored