Novel algorithm inspired by particle behavior enhances medical imaging

Medical imaging methods such as ultrasound and MRI are often affected by background noise, which can introduce blurring and obscure fine anatomical details in the images. For clinicians who depend on medical images, background noise is a fundamental problem in making accurate diagnoses.

Methods for denoising have been developed with some success, but they struggle with the complexity of noise patterns in medical images and require manual tuning of parameters, adding complexity to the denoising process.

To solve the denoising problem, some researchers have drawn inspiration from quantum mechanics, which describes how matter and energy behave at the atomic scale. Their studies draw an analogy between how particles vibrate and how pixel intensity spreads out in images and causes noise. Until now, none of these attempts directly applied the full-scale mathematics of quantum mechanics to image denoising.

In a paper this week in AIP Advances, by AIP Publishing, researchers from Massachusetts General Hospital, Harvard Medical School, Weill Cornell Medicine, GE HealthCare, and Université de Toulouse took a particle-pixel analogy to the next level.

While quantum localization is a well-established phenomenon in physical materials, our key innovation was conceptualizing it for noisy images - translating the physics literally, not just metaphorically. This foundational analogy didn't exist before. We're the first to formalize it."

Amirreza Hashemi, Author

A central concept in the math describing matter and energy, localization is used to explain how particles vibrate in a space. Vibrations that stay confined are considered localized, while vibrations that spread out are diffused. Similarly, pixel intensity, or brightness, in a clear image can be considered localized, while noisy patterns in an image can be considered diffused.

The authors apply the same mathematics that describes the localization of particle vibrations in the surrounding physical space to decipher the localization of pixel intensity in images. In this way, they can separate the noise-free "signal" of the anatomical structures in the image from the visual noise of stray pixels.

"The main aspect was developing an algorithm that automatically separates the localized (signal) and nonlocalized (noise) components of pixels in an image by exploiting their distinct behaviors," Hashemi said.

The researchers' direct application of the physics and mathematics of particles also eliminated the need to manually fine-tune parameters in denoising algorithms, which Hashemi said is a major hindrance in traditional approaches.

"Our method leverages physics-driven principles, like localization and diffusive dynamics, which inherently separate noise from signal without expensive optimization," Hashemi said. "The algorithm just works by design, avoiding brute-force computations."

Their method has applications not only in medical image denoising, but across quantum computing, too.

"Our physics-driven framework aligns with the computational primitives of quantum systems, offering a potential performance advantage as quantum computing scales."

Source:
Journal reference:

Hashemi, A., et al. (2025). A novel perspective on denoising using quantum localization with application to medical imaging. AIP Advances. doi.org/10.1063/5.0267924.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Systemic barriers prevent doctors from using life saving ultrasound technology