Targeting miR-378 could offer a dual-action strategy against osteoporosis

Osteoporosis is a degenerative disease characterized by decreased bone mass and damage to bone microarchitecture, as well as increased bone fragility. Previous research showed that the conserved microRNA-378 (miR-378) suppresses bone marrow stromal cell (BMSC) osteogenesis and hinders fracture healing, but its precise role in osteoporosis remains unclear.

This research, published in the Genes & Diseases journal by a team from Chinese Academy of Sciences and The Chinese University of Hong Kong, examined miR-378 in an ovariectomy (OVX)-induced osteoporosis model, exploring both osteoclastogenesis and osteogenesis.

Three-dimensional imaging and histological staining showed that miR-378-overexpressing transgenic (Tg) mice experienced significantly lower bone mineral density, thinner trabeculae, and reduced calcium deposition after OVX surgery. Additionally, miR-378 increased BMSC's osteoclastogenesis by activating both the canonical and non-canonical nuclear factor kappa-light-chain-enhancer of activated B (NF- κB) signaling pathways.

In silico analysis results identified tumor necrosis factor receptor-associated factor 3 (Traf3) as one of the direct target genes for miR-378-5p and its knockdown may result in severe osteoclastogenesis. Further experiments indicated that miR-378 overexpression elevated transforming growth factor beta (TGFβ), which impaired BMSC osteogenesis by downregulating Wnt/β-catenin signaling in a Traf3-dependent manner.

Remarkably, intravenous injection of an anti-miR-378 lentiviral therapy via tail-vein injection reversed bone loss, restored bone formation rates, and reduced osteoclast numbers, significantly improving bone microarchitecture in OVX mice.

While these collective data highlight the key role of miR-378 in OVX-induced osteoporosis, additional studies are needed to confirm the efficacy of anti-miR-378 therapy in wild-type mice. In conclusion, targeting miR-378 could offer a dual-action strategy, simultaneously inhibiting bone resorption and boosting bone formation. This dual action positions miR-378 inhibitors as compelling candidates for next-generation osteoporosis therapies, especially for postmenopausal women.

Source:
Journal reference:

Feng, L., et al. (2025). MiR-378 mediates the ovariectomy induced bone loss via exaggerating osteoclastogenesis and transforming growth factor beta impaired osteogenesis. Genes & Diseases. doi.org/10.1016/j.gendis.2025.101754

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Targeting the lysosome-iron-mitochondria axis for osteoporosis therapy