Adenosine Pharmacological Effects

Adenosine is a purine present normally in the body. This molecule however has several physiological and pharmacological roles to play in functioning of the normal body as well as in some diseased conditions.

There are several pharmacological aspects of this molecule.

Effects on the heart and blood vessels

In the heart and blood vessels, adenosine has profound effects. It helps to dilate or expand the blood vessels that supply the heart (coronary blood vessels) and thereby enhances blood supply to the heart muscles.

Blood vessels all over the body also dilate when adenosine is administered.

In the heart adenosine decreases heart rate and also decreases the speed with which impulses flow between the heart muscles to bring about a contraction.

Adenosine acts in opposition to adrenaline and also possesses anti-platelet action that prevents platelets from aggregating.

Effects on the kidneys

In the kidneys adenosine reduces blood flow, glomerular filtration rate and decreases secretion of rennin.

Effects on the lungs

In the lungs, adenosine constricts the airways but decreases the blood flow resistance in the lungs and thus may be used to reduce pulmonary artery pressure.

Effects on the liver

In the liver adenosine causes constriction of blood vessels and increases the breakdown of glycogen to form glucose. It also prevents fat breakdown or lipolysis and improves the uptake of glucose.

Effects on the central nervous system

In the brain, adenosine is a depressant neurotransmitter.

Effects on the adrenal glands

In the adrenal glands secretions and production of steroid hormones are raised when adenosine is given.

Effects on immunity

Adenosine suppresses immunity and immunological functions to a certain extent.

Use in heart disease

The United States Food and Drugs Administration approved adenosine for the treatment of supraventricular tachycardia (SVT).

In the heart adenosine acts on the sinus node that is responsible for firing new impulses that bring about contraction of the heart. From the sinus node the impulse passes via the atrioventricular (AV) node.

Adenosine prevents firing of new impulses and also prevents conduction of the impulse via the AV node. Thus it is active in SVT.

Adenosine receptors

The normal level of adenosine in blood ranges between 0.04 and 0.2 micromoles.

There are two adenosine receptors. A1 receptors are found in cardiomyocytes of heart muscle cells. Binding to these receptors inhibits adenyl cyclase activity which lowers cyclic adenosine monophosphate (cAMP). Thus the firing of new impulses at the sinus node is prevented and there is slowing of AV node conduction.

The A2 receptors are found in endothelial cells and smooth muscle cells that line the blood vessels. These work in contrary to the A1 receptors by enhancement of adenylyl cylase activity and increased cyclic AMP. This rise in cAMP causes dilatation of blood vessels.

What are the uses of adenosine in therapy?

Adenosine can help patients with SVT as well as some with re-entrant pathways. Adenosine may also be used to diagnose wide complex SVT and compare SVT with ventricular tachycardia (VT).

Adenosine can also unmask and help detect atrial flutter and atrial fibrillation. Adenosine can also be used for blood pressure control particularly during anesthesia and may also act as an antiplatelet agent.

Side effects of adenosine use

Adenosine is a very short acting drug with duration of action less than a minute. Side effects thus are also very short lasting. Common side effects include reddening or flushing of face, chest discomfort, tightening of airways, headache, falling blood pressure etc.

Drug interactions

Certain drugs can increase blood levels of adenosine and enhance its actions. These include drugs like Dypyridamole. Yet others oppose its effects like theophylline and caffeine.

Further Reading

Last Updated: Jun 10, 2023

Dr. Ananya Mandal

Written by

Dr. Ananya Mandal

Dr. Ananya Mandal is a doctor by profession, lecturer by vocation and a medical writer by passion. She specialized in Clinical Pharmacology after her bachelor's (MBBS). For her, health communication is not just writing complicated reviews for professionals but making medical knowledge understandable and available to the general public as well.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mandal, Ananya. (2023, June 10). Adenosine Pharmacological Effects. News-Medical. Retrieved on October 03, 2024 from https://www.news-medical.net/health/Adenosine-Pharmacological-Effects.aspx.

  • MLA

    Mandal, Ananya. "Adenosine Pharmacological Effects". News-Medical. 03 October 2024. <https://www.news-medical.net/health/Adenosine-Pharmacological-Effects.aspx>.

  • Chicago

    Mandal, Ananya. "Adenosine Pharmacological Effects". News-Medical. https://www.news-medical.net/health/Adenosine-Pharmacological-Effects.aspx. (accessed October 03, 2024).

  • Harvard

    Mandal, Ananya. 2023. Adenosine Pharmacological Effects. News-Medical, viewed 03 October 2024, https://www.news-medical.net/health/Adenosine-Pharmacological-Effects.aspx.

Comments

  1. AILYN OLIVERA AILYN OLIVERA Mexico says:

    I have a question, in what way does it act at the brain level or at the level of the head, to cause headache as an adverse event?

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
ATP regulation in ClC-3 exchangers linked to neurodegenerative diseases, study reveals