Research suggests a central role for NMDA receptors in learning and memory

NewsGuard 100/100 Score

Learning and memory are processes that link experience with behavior and therefore play central roles in our daily experience. That there exists a physical basis for these processes seems at first hard to imagine - except for the fact that physical disruptions in the brain, such as stroke or disease, can make them go wrong.

This week, researchers report that by making targeted genetic disruptions that disable a key neurotransmitter receptor in the fruit fly, they have uncovered an important clue to the physiological mechanisms at work in learning and memory.

The subject of the study was the so-called NMDA receptor - a neurotransmitter receptor possessing special properties that could make it especially useful in learning and memory. In particular, past work has shown that NMDA receptors can respond in a special way to concurrent events on both sides of a synapse. Acting in this way as "coincidence detectors," NMDA receptors may help neurons form stronger or weaker connections with each other depending on whether they are repeatedly stimulated together. Neuroscientists strongly suspect that this process - called synaptic plasticity - of modulating the strength of synaptic connections on the basis of experience forms an elemental, neuron-level basis for learning and memory.

In the new work, the researchers sought to overcome technical hurdles that have stood in the way of understanding when and how NMDA receptors function in learning and memory. The research team, led by Tim Tully of Cold Spring Harbor Laboratory and Ann-Shyn Chiang of National Tsing Hua University, Taiwan, first used a genetic mutation to show that NMDA receptors are required for associative, or Pavlovian, learning in the fruit fly; they then went on to show that these receptors are not just passively participating but are in fact actively needed for both associative learning and long-term memory. The researchers demonstrated this active requirement by molecularly disrupting previously normal, functioning NMDA receptors in an adult fly and then showing that the fly had major difficulties in learning to associate an odor with a footshock--something that normal flies can quickly learn to do. The researchers found that flies with newly disrupted NMDA receptors could, with extended training, eventually learn to associate an odor with a footshock but that their long-term memory appeared to be completely abolished.

A main reason why these findings are significant is because past genetic work on the NMDA receptor relied on disrupting the receptor via genetic mutation, which could cause in the brain's wiring developmental defects that might undermine learning and memory in non-specific ways. The researchers' approach of disrupting the receptor at a specific time in an otherwise-normal adult brain ruled out such potentially confounding developmental effects.

The acute requirement for NMDA receptors strengthens the case that they play a central molecular role in synaptic plasticity--potentially by virtue of their ability to act as coincidence detectors that allow neuronal communication to extend beyond simple send-and-receive messaging. Because NMDA receptors are found in very distantly related animal species, they may represent an evolutionarily ancient component of synaptic function and synaptic plasticity.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research from NY highlights pollution as a key factor in rising cancer rates among youth