Genetically-engineered antivenom to improve the treatment of snake bite

NewsGuard 100/100 Score

As reported in the latest issue of the prestigious medical journal, Public Library of Science: Medicine, researchers at the Liverpool School of Tropical Medicine have made an important breakthrough in using DNA sequencing rather than actual snake venom as the means to generate antivenom.

Antivenom is conventionally manufactured by immunising large animals with small quantities of venom and then extracting the antibodies produced in the blood. This new research has demonstrated however that it is possible to generate an antibody response by using synthetic DNA which closely resembles the most toxic and therefore the most important parts of actual venom.

Dr Simon Wagstaff and colleagues selected the carpet viper as the most medically important snake in west Africa. Using genetic techniques, they isolated the parts of the genes in the snake's venom gland which make the proteins responsible for the destruction of blood vessels and consequent haemorrhage, one of the often fatal outcomes of viper bites. They then identified seven parts of these proteins which were likely to be clinically important and synthesised them into a single DNA string for immunisation.

Immunisation with the DNA produced antibodies that reacted with many of the venom haemorrhagic toxins and also substantially neutralised their ability to cause haemorrhage.

The successful outcome of this "proof of principle" research has demonstrated that it is possible to use genetic techniques to produce immunogens (substances that generate an immune response in a host animal) to generate targeted antibodies for specific toxins.

Dr Rob Harrison, Head of the Alistair Reid Venom Research Unit at the School explained: "By raising antibodies against specific toxins rather than the whole venom (as in traditional antivenom production), this approach could offer significant improvements such as using lower doses of antivenoms which in turn reduces the risk of an adverse reaction which frequently occurs as a result of the large volumes of conventional antivenom that has to be given to cure the victim of the snake bite.

"However, it is important to stress that this research has only demonstrated the possibility of manufacturing antivenom in this way and only against a specific toxin group," he added. Further work is now underway to extend this research to other toxins.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers receive NIH grant to help develop gene therapy for HIV