Zorro-LNA stops genetic disorders in their tracks

NewsGuard 100/100 Score

A study to appear in the June 2007 issue of The FASEB Journal describes a new agent, called "Zorro-LNA," which has the potential to stop genetic disorders in their tracks.

In the study, researchers from the Karolinska Institute in Stockholm, Sweden, describe how they developed Zorro-LNA to bind with both strands of a gene's DNA simultaneously, effectively disabling that gene. This development has clinical implications for virtually every human condition caused by or worsened by dominant defective genes. Examples include: Huntington's disease, familial high cholesterol, polycystic kidney disease, some instances of glaucoma and colorectal cancer, and neurofibromatosis, among others.

"Zorro-LNA is a new substance that targets DNA and turns off genes," said co-author Edvard Smith of the Karolinska Institute in Sweden. "It has the potential of becoming a new drug for the treatment of human genetic disease."

The findings described in this article significantly raise the possibility that new therapies could arise where defective DNA is deactivated more completely and more thoroughly than ever before. For instance, Zorro-LNA could be used in combination with "RNA interference" (RNAi). Like Zorro-LNA, RNAi has the ability to deactivate genes, but does so by degrading the gene's RNA. In addition, Zorro-LNA could be used to deactivate certain genes in stem cells, which could eventually lead to the development of new cells, tissues, or organs. The discovery of RNAi was recognized by a Nobel Prize award in 2006 to two American scientists.

"This is a major development in the treatment not only of genetic diseases, but also of acquired diseases when microbes or toxins cause genes to go awry" said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "One might say these researchers have found a gene-hunter's Holy Grail for which scientists have been hunting for many years. Zorro-LNA should give us a new, safe way of blocking the effects of errors in our genetic repertoire."

http://www.faseb.org

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Siblings with unique gene mutation offer insights into type 1 diabetes treatment