Improved MRI scanning of tumours

NewsGuard 100/100 Score

Researcher Kristina Djanashvili has developed a substance that enables doctors to get better MRI scans of tumours.

On Tuesday 13 January, Djanashvili will be awarded a doctorate by TU Delft for her work in this field.

The medical profession's ability to trace and visualise tumours is increasing all the time. Detection and imaging techniques have improved enormously in recent years. One of the techniques that have come on by leaps and bounds is MRI. Patients who are going to have MRI scans are often injected with a 'contrast agent', which makes it easier to distinguish tumours from surrounding tissues. The quality of the resulting scan depends partly on the ability of this agent to 'search out' the tumour and induce contrast.

Better images

At TU Delft, postgraduate researcher Kristina Djanashvili has developed a new contrast agent with enhanced tumour affinity and contrast induction characteristics. In principle, this means that cancers can be picked up sooner and visualised more accurately.

The new agent is a compound incorporating a lanthanide chelate and a phenylboronate group substance. The lanthanide chelate ensures a strong, clear MRI signal, while the phenylboronate group substance 'searches out' cancerous tissue.

Water exchange

The lanthanide chelate influences the behaviour of water molecules, even inside the human body. It is ultimately the behaviour of the hydrogen nuclei in the water molecules that makes MRI possible and determines the quality of the image produced. The stronger the influence of the lanthanide chelate on the neighbouring hydrogen nuclei (the so-called water exchange) and the more hydrogen nuclei affected, the better the MRI signal obtained. Djanashvili has defined the methods for determining the water exchange parameters.

Sugar

Djanashvili has also provided her contrast agent with enhanced tumour-seeking properties by including a phenylboronate group substance. Phenylboronate has an affinity with certain sugary molecules that tend to concentrate on the surface of tumour cells. What makes the selected phenylboronate-containing agent special is its ability to chemically bond with the surface of a tumour cell.

Mice

Finally, Djanashvili has managed to incorporate the compound into so-called thermosensitive liposomes. A thermosensitive liposome forms a sort of protective ball, which opens (releasing the active compound) only when heated to roughly 42 degrees. This means that, by localised heating of a particular part of the body, it is possible to control where the compound is released. The positive results obtained from testing the new agent on mice open the way for further research.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study suggests CT imaging with automated AI system predicts EGFR genotype, identifying mutation status cost-effectively and non-invasively