June Cold Spring Harbor Protocols features electrophoresis in RNA analysis and avian embryos

NewsGuard 100/100 Score

Gel electrophoresis is one of the most important and frequently used techniques in RNA analysis. Electrophoresis is used for RNA detection, quantification, purification by size and quality assessment. Gels are involved in a wide variety of methods including northern blotting, primer extension, footprinting and analyzing processing reactions. The two most common types of gels are polyacrylamide and agarose. Polyacrylamide gels are used in most applications and are appropriate for RNAs smaller than approximately 600 nucleotides (agarose gels are preferred for larger RNAs). "Polyacrylamide Gel Electrophoresis of RNA" describes how to prepare, load and run polyacrylamide gels for RNA analysis. The article is featured in the June issue of Cold Spring Harbor Protocols and is freely available on the journal's website. It is part of a suite of basic RNA protocols included in this month's issue that provide an early preview of the forthcoming RNA: A Laboratory Manual due later this year from Cold Spring Harbor Laboratory Press.

The rapid pace of technological progress in biological imaging has provided great insight into the processes of embryonic development. But for higher organisms with opaque eggs or internal development, optical access to the embryo is limited. While various embryonic culture methods are available, vertebrate development is best studied in an intact embryo model, one in which the natural environment has not been disrupted. In the June issue of Cold Spring Harbor Protocols, Paul Kulesa and colleagues from the Stowers Institute for Medical Research present "In Ovo Live Imaging of Avian Embryos," a detailed set of instructions for time-lapse imaging of fluorescently labeled cells within a living avian embryo. During the procedure, a hole is made in the shell, and a Teflon membrane that is oxygen-permeable and liquid-impermeable is used to provide a window for visualization of the embryo via confocal or two-photon microscopy. Imaging can take place for up to five days without dehydration or degradation of the normal developmental environment. As one of June's featured articles, the protocol is freely available on the journal's website.

Source: Cold Spring Harbor Laboratory

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers identify cold-sensing protein in mammals