A new gene expression analysis technique on a single molecule sequencer

NewsGuard 100/100 Score

A new gene expression technique adapted for single molecule sequencing has enabled researchers at the RIKEN Omics Science Center (OSC) to accurately and quantitatively measure gene expression levels using only 100 nanograms of total RNA. The technique, which pairs RIKEN's Cap Analysis of Gene Expression (CAGE) protocol with the Helicos(R) Genetic Analysis System developed by Helicos BioSciences Corporation, opens the door to the detailed analysis of gene expression networks and rare cell populations.
In recent years, next-generation DNA sequencers have produced an increasingly detailed picture of how genes are expressed at the molecular level. The transcriptional output of these genes - the RNA copies produced from DNA - has revealed a richness of complexity in transcript structure and function, providing insights into the molecular-level properties of cancers and other diseases.

One of the most powerful methods for analyzing RNA transcripts is the Cap Analysis of Gene Expression (CAGE) protocol developed at the RIKEN OSC. A unique approach, CAGE enables not only high-throughput gene expression profiling, but also simultaneous identification of transcriptional start sites (TSS) specific to each tissue, cell or condition.

With HeliScopeCAGE, the OSC research team has adapted the existing CAGE protocol for use with the revolutionary HeliScopeTM Single Molecule Sequencer. Unlike earlier sequencers, the HeliScope Sequencer does not employ polymerase chain reaction (PCR) amplification to multiply a small number of DNA strands for analysis, a process which can introduce biases into data. Instead, the HeliScope Sequencer actually sequences the DNA strand itself, enabling direct, high-precision measurement.

In a paper published in Genome Research, RIKEN researchers confirm that this direct approach reduces biases and generates highly reproducible data from between 5 micrograms to as little as 100 nanograms of total RNA. A comparison using a leukemia cell line (THP-1) and a human cervical cancer cell line (HeLa) further shows that results from the technique are closely correlated to those from traditional microarray analysis. By making possible high-precision gene expression analysis from tiny samples, HeliScopeCAGE greatly expands the scope of research at the OSC, strengthening the institute's role in Japan as a hub for next-generation genome analysis.

Reference: Mutsumi Kanamori-Katayama, Masayoshi Itoh, Hideya Kawaji, Timo Lassmann, Shintaro Katayama, Miki Kojima, Nicolas Bertin, Ai Kaiho, Noriko Ninomiya, Carsten O. Daub, Piero Carninci, Alistair R. R. Forrest and Yoshihide Hayashizaki. Unamplified Cap Analysis of Gene Expression on a single molecule sequencer. Genome Research (2011).

About the RIKEN Omics Science Center

Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.

Here at the RIKEN Omics Science Center, we are developing a versatile analysis system, called the "Life Science Accelerator (LSA)", with the objective of advancing omics research. LSA is a multi-purpose, large-scale analysis system that rapidly analyzes molecular networks. It collects various genome-wide data at high throughput from cells and other biological materials, comprehensively analyzes experimental data, and thereby aims to elucidate the molecular networks of the sample. The term "accelerator" was chosen to emphasize the strong supporting role that this system will play in supporting and accelerating life science research worldwide.

For more information, please contact:
Dr. Alistair R. R. Forrest
Dr. Masayoshi Itoh
LSA Technology Development Group
RIKEN Omics Science Center (OSC)
Tel: +81-45-503-9222
Fax: +81-45-503-9216
Email: [email protected]

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Rare variants in the YKT6 gene cause new neurological disorder, study finds