New approach reduces cyanogen, enhances nutritional value in root crop

NewsGuard 100/100 Score

Results could prove beneficial to millions suffering from malnutrition

Researchers working at The Donald Danforth Plant Science Center have made an another advancement in their efforts to improve the root crop cassava which is a major source of calories to 700 million people worldwide, primarily living in the developing world. A study conducted by Dr. Narayanan N. Narayanan and Dr. Uzoma Ihemere, research scientists working in the lab of Dr. Richard T. Sayre, have developed an approach that not only accelerates the reduction of cyanogen during food processing, resulting in a safer food product, but also lead to increased root protein levels and enhanced nutritional value. The results of this research are published in the recent article, "Overexpression of Hydroxynitrile Lyase in Cassava Roots Elevates Protein and Free Amino Acids while Reducing Residual Cyanogen Levels," in the PloS One journal.

Cassava has many properties that make it an important food source across much of Africa and Asia. It grows well in poor soils with little rainfall, but it also has many limitations; both leaves and roots contain potentially toxic levels of cyanogenic glucosides and although calorie dense, the starchy, tuberous roots provide the lowest sources of dietary protein among the major staple food crops; less than 30% of the minimum daily requirement.

Insufficient protein intake often leads to protein energy malnutrition (PEM), which can lead to permanent physical and mental disabilities. Cassava has the lowest protein to energy ratio (P:E) of any staple food, making resource-poor populations that rely on cassava as their major source of calories at high risk of PEM. According to the World Health Organization, PEM is by far the most lethal form of malnutrition, affecting one in four children in Africa.

Hydroxynitrile Lyase (HNL) is a natural cassava protein that contains 50% essential amino acids and is found in the leaves of the plant. It can be eaten by humans with no allergic side effects. Narayanan and his colleagues showed that transgenic roots expressing HNL had a 53-74% reduction in root cyanogen levels, and resulted in a nutritionally enhanced cassava that contained three times as much protein and twice as much total amino acids when compared with wild type. They also proved that over-expression of HNL reduced the time required to process and remove life threatening cyanogens in the tuberous roots from days to minutes. Significantly, HNL is heat stable and will tolerate cooking for 15 minutes which is helpful in variety of food preparation methods.

"This breakthrough demonstrates that it is possible to use genetic modification to deliver enhanced cassava with decreased cyanogenic content as well as increased protein and essential amino acids that will directly benefit children and at-risk populations," said Narayanan.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research pinpoints key pathways in prostate cancer's vulnerability to ferroptosis