Miniature, ultra-flexible electrodes could open new possibilities for more accurate and local DBS

NewsGuard 100/100 Score

Some 90,000 patients per year are treated for Parkinson's disease, a number that is expected to rise by 25 percent annually. Deep Brain Stimulation (DBS), which consists of electrically stimulating the central or peripheral nervous system, is currently standard practice for treating Parkinson's, but it can involve long, expensive surgeries with dramatic side effects. Miniature, ultra-flexible electrodes developed in Switzerland, however, could be the answer to more successful treatment for this and a host of other health issues.

Today, Professor Philippe Renaud of the -cole Polytechnique F-d-rale de Lausanne (EPFL) in Switzerland reports on soft arrays of miniature electrodes developed in his Microsystems Laboratory that open new possibilities for more accurate and local DBS. At the 2013 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Boston, in a symposium called "Engineering the Nervous System: Solutions to Restore Sight, Hearing, and Mobility," he announces the start of clinical trials and early, yet promising results in patients, and describes new developments in ultra-flexible electronics that can conform to the contours of the brainstem-in the brain itself-for treating other disorders.

At AAAS, Renaud outlines the technology behind these novel electronic interfaces with the nervous system, the associated challenges, and their immense potential to enhance DBS and treat disease, even how ultra flexible electronics could lead to the auditory implants of the future and the restoration of hearing. "Although Deep Brain Stimulation has been used for the past two decades, we see little progress in its clinical outcomes," Renaud says. "Microelectrodes have the potential to open new therapeutic routes, with more efficiency and fewer side effects through a much better and finer control of electrical activation zones." The preliminary clinical trials related to this research are being done in conjunction with EPFL spin-off company Aleva Neurotherapeutics, the first company in the world to introduce microelectrodes in Deep Brain Stimulation leading to more precise directional stimulation.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough brain stimulator could revolutionize treatment for neurological disorders