Researchers show a model of how cells' regulatory systems work

NewsGuard 100/100 Score

How cells regulate their own function by "accelerating and braking" is important basic knowledge when new intelligent medicines are being developed, or when plant cells are tweaked to produce more bioenergy. In a study published by Nature Communications 14 May, researchers at Uppsala and Ume- universities show a model of how cells' regulatory systems work.

All living cells have a regulatory system similar to what can be found in today's smartphones. Just like our phones process a large amount of information that we feed them, cells continuously process information about their outer and inner environment. Inside the cells, information is sent and processed via a large network of interactions between signalling molecules.

In electronic circuits it is common with negative feedback, inhibiting functions, to make signals clearer and to reduce noise that can obscure important information. Cells also use this technique for reducing unwanted noise. Almost half of all signalling molecules that regulate which genes should be on or off, regulate their own genetic expression through biochemical reactions acting as inhibitors.

"If the number of signalling molecules is more than necessary, they shut down their own production for a short while, to later resume it. The difference between feedback in electronic systems and biological systems is that biological systems are much more imprecise and slow", explains Andreas Gr-nlund, lead author, currently active at Ume- University.

Together with professors Per L-tstedt and Johan Elf, both at Uppsala University, he has used new data and mathematical models to calculate how long the molecules must remain in their binding sites to make the feedback exactly strong enough to reduce noise as much as possible.

The calculations showed that the molecules ideally should bind significantly weaker than previously believed, a characteristic that turned out to correspond well to the binding strength found in global regulatory molecules in E. coli bacteria.

"A car driver needs to know when and how hard to press the brake in different situations and which way to turn the steering wheel in a left turn. In the same way, we need to increase our understanding of regulatory systems in cells to be able to develop new intelligent medicines when the regulation system doesn't work or to be able to control plant cells to produce green energy through more efficient production of bio mass", says Johan Elf.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.