Researchers find master regulator of EMT and metastasis

NewsGuard 100/100 Score

The predominant cause of death in cancer patients is metastasis, the formation of secondary tumors in other organs like the brain, liver, and lungs. Cancer cells detach from the original primary tumor and reach a single cell or group of cells in another organ. The cells of the body normally remain in place through adhering to an extracellular substance. However, cancer cells learn how to release themselves from these bonds and invade surrounding tissues, blood, and the lymphatic system.

The transformation of sedentary, specialized cells into wandering, invasive, and unspecialized cells is called epithelial-mesenchymal transition (EMT), which is central to metastasis. EMT is a multistage process, which is accompanied by a fundamental change in cell morphology and number of genetic programs. The molecular processes that govern EMT, however, are still poorly understood.

Main Switch Found

The research groups of Prof. Gerhard Christofori of the Department of Biomedicine at the University of Basel; Prof. Erik van Nimwegen from the Biozentrum, University of Basel; and Prof. Dirk Schuebeler from the Friedrich Miescher Institute have discovered a master regulator of EMT and metastasis: the transcription factor Sox4 is upregulated in its activity and triggers the expression of a number of genes that play an important role during EMT and metastasis.

In particular, Sox4 promotes the expression of the enzyme Ezh2, a methyltransferase, which generally influences methylation of specific proteins (histones), the packaging of the genetic material, and thus its readability and gene expression. Due to this change in genetic information, the behavior and function of cells are reprogrammed - a process that is currently observed during metastasis. Such a change in gene expression is also found in patients with malignant cancer and metastasis and correlates with a poor prognosis.

These findings point to the possibility that the inhibition of the transcription factor Sox4 and especially the methyltransferase Ezh2 could hinder metastasis in cancer patients. Appropriate medications are currently being developed but they need to undergo clinical trials before being used in patients. The research was implemented within the framework of the SystemsX.ch-RTD Project "Cell Plasticity."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists take the first step toward early diagnosis of metastasis formation