Combination therapy effective in treating drug-resistant malaria

NewsGuard 100/100 Score

Longer treatment courses with combination therapies prove effective in areas with drug resistance

WHAT:

Resistance to artemisinin, the main drug to treat malaria, is now widespread throughout Southeast Asia, among the Plasmodium falciparum (P. falciparum) parasites that cause the disease and is likely caused by a genetic mutation in the parasites. However, a six-day course of artemisinin-based combination therapy-as opposed to a standard three-day course-has proved highly effective in treating drug-resistant malaria cases, according to findings published today in the New England Journal of Medicine. The research was conducted by an international team of scientists including those from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Previous clinical and laboratory studies suggest that P. falciparum parasites with a mutant version of a gene called K13-propeller are resistant to artemisinin. In the new study, researchers found that the geographic distribution of these mutant parasites in Western Cambodia corresponded with the recent spread of drug resistance among malaria patients in that region. Although artemisinin continued to effectively clear malaria infections among patients in this region, the parasites with the genetic mutation were eliminated more slowly, according to the authors. Slow-clearing infections strongly associated with this genetic mutation were found in additional areas, validating this marker of resistance outside of Cambodia. Artemisinin resistance is now firmly established in areas of Cambodia, Myanmar, Thailand and Vietnam, according to the authors.

As a potential treatment, the researchers tested a six-day course of artemisinin-based combination therapy in Western Cambodia and found the regimen to be effective in this region, where resistance has become the most problematic. To contain the further spread of artemisinin resistance, continued geographical monitoring is needed as well as a re-examination of standard malaria treatment regimens and the development of new therapy options, the authors write.

ARTICLE:

EA Ashley et al. The spread of artemisinin resistance in falciparum malaria. New England Journal of Medicine DOI: 10.1056/NEJMoa1314981.

WHO:

NIAID Director Anthony S. Fauci, M.D., is available to comment on this research. Rick M. Fairhurst, M.D., Ph.D., chief of the Malaria Pathogenesis and Human Immunity Unit in NIAID's Laboratory of Malaria and Vector Research, is a co-author on the paper and is also available for comment.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
WHO recommends R21/Matrix-M vaccine for malaria prevention in children