Scientists receive $6.4 million NSF grant to study smell navigation

NewsGuard 100/100 Score

A team of scientists, including a UC Berkeley pioneer in odor mapping, has received a $6.4 million grant from the National Science Foundation to dig deeper into how humans and animals navigate by using their sense of smell and converting odors into spatial information.

The NSF this week awarded $15 million to three interdisciplinary teams of scientists to "crack the olfactory code" as part of President Obama's BRAIN initiative.

"Olfaction is one of the last frontiers of neuroscience, the least understood of the five senses, so this is a big win," said UC Berkeley psychologist Lucia Jacobs, one of 30 researchers who hashed out ideas and presented research proposals at the NSF's Ideas Lab in Virginia in June.

"We can create a virtual olfactory landscape for the animals and see how they respond behaviorally and in terms of neural activity," she added.

Jacobs' team will use the money to study how diverse animals, including insects, navigate a highly customized "smellscape." University of Colorado engineering professor John Crimaldi, principal investigator of the project and an expert in fluid dynamics, will design the odor landscape that Jacobs will use to study the smell navigation skills of hermit crabs, leopard slugs, death's head and American cockroaches.

"All of these species are known to orient, just like the common laboratory animals, to odors in the air and to find the source of these odors," Jacobs said. "We also have neuroscientists who will use advanced methods to tell us what the brain is doing when two lab species, a mouse and a fruit fly, engage in this same behavior."

When we smell, odor molecules travel up the nasal passage, where they are identified by receptors that send signals to the olfactory bulb, which processes the information. Humans are thought to have about 400 working olfactory receptors, a dog, 800 and a mouse, 1,100.

"We know a large, ancient part of the brain is devoted to olfaction, and that virtually all animals, including humans, use smell to navigate," she added. "But we still don't know exactly how the brain does it, and that's what we mean to find out."

Computational modeling will be used to simulate the odor navigation processes used by the critters.

"By studying not only the typical lab species but also adding animals with very different nervous systems, such as crustacean crabs, molluscan slugs and insect groups, we will be able to test our computational models very rigorously to be sure they don't just work for a couple of domesticated lab species," Jacobs said.

For example, she said, "The American cockroach is one of the fastest land animals, the leopard slug one of the slowest, yet both orient to the same airborne odors. How are they similar or different, at different scales of time and space? That is what my lab will tackle."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Transcranial direct current stimulation shows promise for treating depression, anxiety in older adults