Novel assay shows potential to detect circulating cancer biomarkers in blood samples

NewsGuard 100/100 Score

Future Science Group (FSG) today announced the publication of an article in Future Science OA presenting early data from a novel assay for the non-invasive detection of PD-L1 and other biomarkers in patient blood samples.

Response rates to immunotherapies targeting the PD-1 pathway vary, and efforts are ongoing to improve the discovery of those who will and will not benefit from such therapies. Expression of PD-L1, among other biomarkers, is associated with response; however, owing to tumor heterogeneity and the fact this biomarker is not static, biopsies are not suitable. Furthermore, biopsies are invasive and unsuitable for repeated testing.

Novel research from an international team led by Jinkai Teo (Merck Research Laboratories, Singapore) sought to solve this problem using peripheral blood samples, and a less-invasive approach.

Whole blood from both healthy donors and breast cancer patients underwent circulating tumor cell enrichment and was loaded onto a microfluidic chip, undergoing chipcytometry.

The results demonstrated that the workflow had a mean detection rate of 22.8%, and could determine PD-L1 and PD-L2 expression levels.

"We believe the main advantages of chipcytometry lie in the iterative staining process that allows retrospective evaluation of additional markers and the potential to measure a large number of parameters without the spillover/compensation problems encountered with flow cytometry," commented the authors. "This approach allows the analysis of additional immunomodulatory targets on tumor cells beyond PD-L1 and PD-L2, which is particularly critical, considering high dimensional analysis of these markers is likely to become increasingly relevant as immunotherapy moves beyond the administration of single immunomodulatory agents toward combinations that synergize in their antitumor immune response."

Furthermore, the potential to include more positive or negative markers could allow increased confidence that identified cells are CTCs.

However, the authors note that these data are preliminary, and further experimentation is needed to fully establish feasibility of the approach.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Longitudinal multi-omics monitoring paves the way for early pancreatic cancer diagnosis