Study illustrates bone in-growth capabilities of Stryker's 3D-printed Tritanium cages

Stryker's Spine division today announced the publication of a pre-clinical animal study comparing the performance of spinal implants made from a variety of materials, which illustrated the bone in-growth and biological fixation capabilities of its 3D-printed Tritanium cages. The study was published in the July issue of The Spine Journal.

The purpose of the study was to compare the bone in-growth and biomechanical differences of interbody cages with various material technologies in an ovine lumbar interbody fusion model. The cages involved in this study included traditional PEEK cages, plasma-sprayed titanium-coated PEEK cages, and Stryker's 3D-printed porous Tritanium cages.

The results demonstrated that the Tritanium cages exhibited significantly greater total bone volume within the graft window at both 8 and 16 weeks compared to the PEEK cages (p<0.01).1 Tritanium cages also were the only cages that showed a decrease in range of motion and an increase in stiffness across all three loading directions (axial rotation, flexion-extension, and lateral bending) between the 8-week and 16-week time points (p-value ≤0.01).

"The results of this study provide an evidence-based approach to decision-making regarding interbody materials for spinal fusion, as there is significant variability in the materials commonly used for interbody cages in spine surgery," said Sigurd H. Berven, M.D., orthopedic surgeon at the University of California, San Francisco. "The study showed the potential for bone in-growth into and around the Tritanium cages."

According to Michael Carter, vice president and general manager of Stryker's Spine division, 3D printing, also known as additive manufacturing, allows the creation of a material with "precisely randomized" porous structures designed to mimic bone.2 "Stryker's proprietary Tritanium Technology, a novel, highly porous titanium alloy material designed for bone in-growth and biological fixation, is based on additive manufacturing techniques for orthopaedic surgery pioneered by Stryker over 15 years ago," Carter said. "This important study reinforces the value of our growing line of Tritanium interbody cages and demonstrates Stryker's commitment to bringing the latest in advanced technologies to our customers."

Advertisement

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
Nutrition has bigger positive impact on bone mass and strength than exercise