Biological aging caused by cancer treatments correlates with cognitive decline

NewsGuard 100/100 Score

Cancer treatments are suspected to accelerate certain aging processes in the body. A new study has found that indicators of such biological aging correlate with declines in cognitive function in women who had undergone breast cancer treatment several years earlier. Published early online in CANCER, a peer-reviewed journal of the American Cancer Society, the findings point to an aging-like effect of cancer treatments and further connect this to cognitive decline.

Treatments for breast cancer increase patients' risks for long-term and late toxicities, including persistent fatigue, pain, and cognitive dysfunction. Certain treatments, including radiation and some chemotherapeutic drugs, work by damaging the DNA of cancer cells, but they can also cause damage to DNA of normal cells, which can contribute to accelerated biological aging.

To examine whether indicators of biological aging are related to cognitive function in breast cancer survivors, Judith E. Carroll, PhD, Associate Professor of Psychiatry, of the UCLA Cousins Center for Psychoneuroimmunology and the Semel Institute for Neuroscience and Human Behavior, and her colleagues evaluated a group of 94 women who had been treated for breast cancer three to six years earlier. The indicators of biological aging included elevated levels of DNA damage, reduced telomerase enzymatic activity, and shorter telomere length in certain blood cells. (Telomerase is an enzyme that is important for maintaining the length of telomeres, repeat sequences of DNA at the ends of chromosomes that help maintain the health of cells and serve as a marker of cell age.)

The team found that women who had previously been treated for breast cancer who had both higher DNA damage and lower telomerase activity had lower executive function scores. In addition, lower telomerase activity was associated with worse attention and motor speed. Telomere length was not related to any of the neurocognitive domains.

"These findings are important because they provide further information about what might be happening after cancer treatment that impacts cognitive decline in some individuals. This information can inform future research and may lead to new interventions to prevent these cognitive declines," said Dr. Carroll, who is also a member of the UCLA Jonsson Comprehensive Cancer Center. "The work is novel by identifying key factors in biological aging and connecting them to cognitive function, which initiates new avenues of research."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New trials show promise for immune checkpoint blockers in early-stage lung cancer