Research aimed at increasing shelf life of radiation drugs offers hope for cancer patients

NewsGuard 100/100 Score

People with hard-to-reach cancers in the kidney, gut and prostate will have improved hope for early diagnosis and treatment with new research aimed at increasing the shelf life of revolutionary radiation drugs.

Funding of AU$2.5 million will kickstart a two-year manufacturing research project that will harness the combined expertise of the School of Chemistry, Bio21 Institute, University of Melbourne and the Peter MacCallum Cancer Centre to increase the shelf-life of radiation drugs, so they can be shipped to patients globally.

Telix Pharmaceuticals and Cyclotek, with co-funding from of the Innovative Manufacturing Cooperative Research Centre (IMCRC), will contribute AU$1 million to the project and will lead the research to create a manufacturing production process. They will also work with external partners, iphase Technologies and GenesisCare, to develop and streamline the manufacturing process.

Radiation drugs, known as 'radiopharmaceuticals', can be used to locate and see cancer cells in the body, including hard-to-reach places using the imaging technology, Positron Emission Tomography (PET).

By capturing the radioisotope in a selective 'cage-like' molecule and fusing it to a targeting molecule, the radiation can be directly transported to the cancerous cells for detection of tumors.

In the case of kidney, neuroendocrine and prostate cancers, there are specific 'homing' molecules that can transport the radioactive cargo to the cancer cells, including those that are hidden in the hard-to-reach nooks and crannies of the body like the gut, kidney and prostate.

Again, the process makes it possible to diagnose cancer cells that would otherwise go undetected. Once diagnosed, a higher energy radioisotope can then be used to destroy the cancer cells.

The ability of the drugs to target cancer cells also reduces the number of healthy cells that are damaged by more traditional ways of administering radiation therapy.

It has taken years of basic research at the School of Chemistry, Bio21 Institute, to develop the carrier compounds that are the principle behind this technology. It's exciting to see these compounds being developed for clinical use and manufacture."

Professor Paul Donnelly from the School of Chemistry, Bio21 Institute at the University of Melbourne

Currently, isotopes are being produced locally within the Peter MacCallum Cancer Centre for cancer patients by the company, Cyclotek.

"The challenge is to create radio-labeled diagnostic and therapeutic agents with a longer half-life, that lend themselves to manufacture and distribution beyond the hospital walls," said Michael Wheatcroft of Telix Pharmaceuticals.

Mr. David Chuter, the CEO and Managing Director of the Innovative Manufacturing CRC, said the manufacturing research project will open up a world of potential to treat cancer more effectively.

"The project will build the foundation to safely and cost-effectively manufacture life-changing targeted cancer radiation drugs in Australia, and export them to the world."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Combined chemohormonal therapy for locally advanced prostate cancer offers extended control of PSA levels