Discovery hints at novel therapeutic target for Ewing sarcoma

NewsGuard 100/100 Score

New insights into Ewing sarcoma, an aggressive childhood cancer, were published July 15 in the prestigious journal Nature. Researchers from the Long School of Medicine at The University of Texas Health Science Center at San Antonio contributed to the study.

Ewing sarcoma is a bone and soft tissue cancer that primarily affects children and adolescents. The discovery, made by scientists at the University of Toronto, relates to cell structures called nucleoli and a physical change they undergo called phase separation.

The Toronto team observed that to form normal nucleoli, a structure must be made in the DNA. This is accomplished by the delicate balance of two different, but opposing, genetic code-reading machines. If these systems are not in balance, nucleoli lose their form and break up into smaller entities, the team found.

Study author Alexander Bishop, DPhil, of UT Health San Antonio, with team members at the Greehey Children's Cancer Research Institute, previously showed that one of the genetic code-reading machines is overactive in Ewing sarcoma. In the newly published study, they confirmed that, in Ewing sarcoma, this overactivity causes the nucleoli to break up into smaller entities.

We are working now to better understand the impacts of this biology in Ewing sarcoma and how we can take advantage of it therapeutically."

Alexander Bishop, DPhil, Study Author, of UT Health San Antonio

Dr. Bishop joined UT Health San Antonio in 2005. He is an associate professor in the Department of Cell Systems and Anatomy of the Long School of Medicine, is a researcher in the university's Greehey Institute, and is a member of the Mays Cancer Center, home to UT Health San Antonio MD Anderson.

Funding for the UT Health San Antonio investigators is from the U.S. National Institutes of Health and the Cancer Prevention and Research Institute of Texas.

Source:
Journal reference:

Abraham, K.J., et al. (2020) Nucleolar RNA polymerase II drives ribosome biogenesis. Nature. doi.org/10.1038/s41586-020-2497-0.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New genetic variants could raise a woman's risk of cervical cancer from HPV infections