PARP enzymes can bring two broken DNA ends together, shows study

NewsGuard 100/100 Score

Scientists at St. Jude Children's Research Hospital have identified the structure of double-strand DNA break repair by PARP enzymes. The findings show that PARP2 can bridge the gap, bringing two broken DNA ends together.

The study also provides insight into the mechanisms that underlie PARP activation and the catalytic cycle, which may aid in understanding resistance to cancer drugs that inhibit PARP. The work appears as an advance online publication today in Nature.

We expected that PARP would bind to DNA and modify chromatin to recruit other DNA repair factors. Quite unexpectedly, we found that the PARP enzyme itself is bringing two broken DNA ends together."

Mario Halic, Ph.D., corresponding author of St. Jude Structural Biology

DNA is constantly damaged and repaired. This can be naturally occurring or due to exposure to DNA damaging agents like some chemotherapies used to treat cancer. PARP is a family of enzymes known by scientists to be involved in several key cellular processes including DNA repair. However, exactly how PARP inhibitors interact with DNA and chromatin to accomplish this process was unknown.

The researchers used cryogenic electron microscopy to capture the structure of the PARP enzymes bound to DNA. Their findings showed that the enzyme can draw the ends of broken DNA together. The study may have important implications for understanding resistance to drugs that inhibit the activity of PARP.

PARP inhibitors are a class of drugs used to treat breast, ovarian and prostate cancers among others. These drugs work by stopping PARP enzymes from repairing DNA that has been damaged by chemotherapy. By stopping DNA repair, the drugs can help facilitate cancer cell death. Unfortunately, currently available PARP inhibitors are subject to resistance.

"We now have a better understanding of the complex role PARP enzymes play in DNA repair," said first author Silvija Bilokapic, Ph.D., of St. Jude Structural Biology. "The mechanisms of PARP activation and catalytic cycle we identified help explain how resistance to PARP inhibitors occurs and could help in the development of more effective cancer treatments."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Link between aldehydes and premature aging revealed