Obesity may reduce COVID-19 vaccine efficacy, say researchers

NewsGuard 100/100 Score

A startling new study by researchers at the Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy, indicates that obesity may reduce the immune response to the current coronavirus disease 2019 (COVID-19) vaccines, along with other factors like age and sex. This could have significant implications for vaccination strategies in obese people. The team has released their findings on the medRxiv* preprint server.

Study: OBESITY MAY HAMPER SARS-CoV-2 VACCINE IMMUNOGENICITY. Image Credit: LookerStudio / Shutterstock
Study: Obesity may hamper SARS-CoV-2 vaccine immunogenicity. Image Credit: LookerStudio / Shutterstock

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen, has seriously affected human health, social interactions and economic activity throughout the world. Initially, non-pharmaceutical interventions (NPIs) were put in place all over the globe, from lockdowns at the most severe level, to region-specific or zone-specific isolation measures, along with hand and face hygiene.

However, the severe disruption that such measures present to normal economic and social life make many of these measures untenable in the long-term. While targeted and effective antiviral drugs are yet to be identified to treat the disease in those infected with SARS-CoV-2, vaccine development may be the only way out.

Vaccines provide a ray of hope

At present, there are almost 240 vaccine candidates, with several already having received emergency use authorization in the US, the UK, Europe, and other continents.

The first to be approved was the messenger ribonucleic acid (mRNA) BNT162b2 vaccine (Pfizer/BioNTech), which showed 95% efficacy in preventing symptomatic disease after two doses, and safety comparable to that of other vaccines over the short term.

However, no definitive data is available on how far this vaccine prevents infection. Many researchers use antibody titers, particularly neutralizing antibody titers, as a proxy for this outcome.

This is based on the known relationship between neutralizing activity in serum and protection against respiratory viruses such as influenza or respiratory syncytial virus, showing this to be a functional biomarker of protection against infection with the agent in vivo.

Earlier, it has been shown that a single dose of this vaccine, as well as the Moderna vaccine, when given to seropositive (previously infected) individuals, leads to high neutralizing antibody titers compared to those achieved with two vaccine doses in SARS-Cov-2-naïve individuals. Further studies are required to validate these findings.

Study details

The current preprint describes the efficacy of the BNT162b2 vaccine in a population of healthcare workers. The antibody titer was measured at seven days from the second dose, in 248 healthcare workers (HCWs), and compared with age, sex and body mass index (BMI).

Of this group, 158 were women, and the median age was 47 years. All participants tested negative for infection by a nasopharyngeal swab test at baseline, which was repeated at seven days from the second dose.

A neutralizing antibody response developed to SARS-CoV-2 in almost 100% of the participants after two doses of the vaccine, with a single non-responder. Antibodies binding the S1/S2 subunits were found in the range of 3.8-2460 AU/mL, with a higher antibody geometric mean concentration (AbGMC) compared to that of convalescent sera from human subjects ~286 AU/mL vs 39 AU/mL, respectively.

The test used here was not designed to assay neutralizing activity. Still, a titer of 80 AU/mL is absolutely correlated with a 1:160 titer of the accepted neutralization assay, the plaque reduction neutralization test (PRNT90). In this context, therefore, neutralizing antibodies may be assumed to be present in 93% of participants, at least, who had titers of 80AU/mL or more.

Younger subjects had a higher antibody titer. This was also the case with women, at 339 AU/mL vs 212 AU/mL in men.

However, the BMI also showed a strong relationship with the vaccine's ability to induce an efficient humoral response. Lean and normal-weight subjects (BMI <25) showed higher antibody titers compared to overweight or obese subjects. This association persisted even when adjusted for age.

What are the implications?

Obesity is well-known to be a risk factor for progressive disease and mortality in COVID-19. Not only is infection more severe, but its duration is prolonged by about five days in people with a higher-than-normal BMI.

The negative effect on immunity elicited by current vaccines is perhaps due to the presence of low-grade inflammation in obese individuals. Obesity is also associated with lower gut microbial diversity, as well as in the nose and lungs, and with altered metabolism.

Earlier, gut microbial disturbances, as following antibiotic use, have been shown to be linked to lower efficacy of flu vaccines.

Obesity has been shown to reduce immune responses to other vaccines, including influenza, hepatitis B, and rabies. The current study establishes this relationship in the case of COVID-19 vaccines for the first time.

With a large, if not major, proportion of people in the developed world, especially in the USA, being clinically obese or overweight, the reduction in immunogenicity of the current vaccines in this group is a point of great concern.

In fact, "According to the latest data from the World Health Organization, 39% of adults aged 18 years and over were overweight, and 13% were obese."

This may underscore the need for the development of more efficient vaccination strategies for this group of people. For instance, they may need higher doses, or an additional dose of vaccine, for complete protection.

The sex-dependent difference in COVID-19 morbidity and mortality was also confirmed in this study of vaccine response, with women showing higher antibody responses. This has been seen earlier, with the trivalent inactivated seasonal influenza vaccination (TIV) and most other vaccines.

In fact, with TIV, only half the dosage given to males evokes a similar protective antibody response. The higher the serum testosterone levels, the lower the antibody levels following TIV vaccination.

Females, along with leaner and younger subjects, are therefore better at producing an antibody response to a pathogen. By showing this trend with respect to the current virus, the study contributes an important piece of information to the sum of COVID-19 knowledge.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 5 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2023, April 05). Obesity may reduce COVID-19 vaccine efficacy, say researchers. News-Medical. Retrieved on April 19, 2024 from https://www.news-medical.net/news/20210303/Obesity-may-reduce-COVID-19-vaccine-efficacy-say-researchers.aspx.

  • MLA

    Thomas, Liji. "Obesity may reduce COVID-19 vaccine efficacy, say researchers". News-Medical. 19 April 2024. <https://www.news-medical.net/news/20210303/Obesity-may-reduce-COVID-19-vaccine-efficacy-say-researchers.aspx>.

  • Chicago

    Thomas, Liji. "Obesity may reduce COVID-19 vaccine efficacy, say researchers". News-Medical. https://www.news-medical.net/news/20210303/Obesity-may-reduce-COVID-19-vaccine-efficacy-say-researchers.aspx. (accessed April 19, 2024).

  • Harvard

    Thomas, Liji. 2023. Obesity may reduce COVID-19 vaccine efficacy, say researchers. News-Medical, viewed 19 April 2024, https://www.news-medical.net/news/20210303/Obesity-may-reduce-COVID-19-vaccine-efficacy-say-researchers.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Nirmatrelvir fails to shorten COVID-19 symptoms in latest trial