Could portable air filters promote clearance of SARS-CoV-2-contaminated aerosols indoors?

A new study, released as a preprint on the medRxiv* server, shows that inexpensive portable air cleaners may boost the removal of aerosols containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from indoor spaces by as much as three times, compared to conventional Heating, Ventilation, and Air Conditioning (HVAC) systems.

HVAC and room air cleaning

It is noteworthy that HVAC has played little, if any, role in controlling indoor aerosol transmission. Many guidelines recommend using portable high-efficiency particulate absorbing (HEPA) filters to improve this function, but with little success.

An HVAC system brings fresh air into a room, after filtration, circulates it around the room, and then pushes it out via a vent, along with the contained gaseous aerosols and pollutants.

Conversely, an air cleaner filters the air from the room and sends it back cleaned, with air circulation being a byproduct of this process.

The measure of the air change brought about by these methods is the Air Changes per Hour (ACH), which is the ratio of the volume flow rate of the system to the volume of the room.

Study aim

The current study used portable air cleaners fitted with HEPA filters to remove aerosol particles inside a room near the infected person. The name for this process is source control. The result is a dramatically improved aerosol clearance rate.

A portable air cleaner is meant to filter out dust and other polluting aerosols from room air, rather than remove it from the room altogether. Thus, a combination of both of these would lead to superior infection control.

The clearance time required to remove aerosols at 90% or above is an important parameter in the present situation. The researchers compared several commonly available portable air cleaners in combination with HVAC systems to explore their effectiveness in reducing aerosol particle counts.

The results

With a small control experimental room, and high flow rates, the aerosol clearance was accomplished 4-5 times as fast with the combination of devices than with the HVAC alone. There was complete clearance by 12 minutes.

Even with low flow rates, the portable air cleaner-HVAC combination still surpassed the performance of the HVAC alone.

With the hospital room experimental setup, the HVAC system already produced a high flow rate. With the addition of two air cleaners, the clearance time dipped below 10 minutes, three times faster than with the HVAC alone.

At this setting, the hospital room ACH was 39, but composed of two quite different methods of clearance – HVAC-induced air ventilation and air cleaner-mediated air filtration.

The result is that both operate to clean the room air by different types of air changeovers.

If the ACH is high enough, at about 25, aerosol filtration occurs very efficiently. Fortunately, this is not hard to do with portable air cleaners.

Efficiency peaks at high ACH

The difference between the predicted and the experimental results were significant at low ACH values below 15, but comparable at higher ACH values.

At low ACH, the differences may be due to the presence of dead zones, areas in the room where the air recirculates and traps the aerosols, thus slowing down the movement of the particles during their clearance. Other airflow aberrations may also be present, and need to be identified.

At very low ACH, such dead zones are unlikely, since laminar airflow is predominant. Moreover, slower processes become more important at such low clearance rates, including condensation, air leakage through tiny gaps, and small differences in the outside pressure.

At high ACH, the flow rate keeps the air mixing homogeneously, without dead zones. The use of HVAC in this system may cause the formation of strong local flow fields that prevent the aerosols from leaving the room before being removed by the air cleaners.

Sometimes, the cleaners may filter the aerosol out of the room air even faster than the HVAC removes the air from the room, if their ACH is high enough compared to that of the HVAC. This has been suggested by earlier researchers and could indicate that in rooms with positive air pressure, such a combination would prevent the infectious aerosols from leaving the room and reaching nearby nursing stations or hallways, for instance.

Further studies should use other room designs with the same type of HVAC-air cleaner combination, as well as other smaller but more numerous air cleaners in a similar combination. This would help understand whether more and smaller devices do a better job than fewer high-flow air cleaners.

The optimal positioning of these devices should also be examined.

What are the implications?

The findings show that with increasing ACH, the aerosol clearance time is reduced. This indicates that the result of using the portable devices is to boost the clearance of the aerosols at a given ACH. When used at high flow rates, the clearance time went down markedly.

The study also demonstrates that at standard HVAC operation, aerosol clearance is probably inadequate to control the spread of infectious aerosols in such rooms. The addition of a portable air cleaner would make a significant difference in this situation, especially since it does not push out the aerosol but filters it out of the room air before it leaves the room.

The use of such a combination makes it possible to achieve about 25 ACH, which in turn allows the room air to be cleared of aerosolized particles in less than 10 minutes. This could transform the handling of virus transmission risks in small confined spaces, including hospital wards, classrooms and offices.

*Important Notice

medRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Journal reference:
Dr. Liji Thomas

Written by

Dr. Liji Thomas

Dr. Liji Thomas is an OB-GYN, who graduated from the Government Medical College, University of Calicut, Kerala, in 2001. Liji practiced as a full-time consultant in obstetrics/gynecology in a private hospital for a few years following her graduation. She has counseled hundreds of patients facing issues from pregnancy-related problems and infertility, and has been in charge of over 2,000 deliveries, striving always to achieve a normal delivery rather than operative.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Thomas, Liji. (2021, April 30). Could portable air filters promote clearance of SARS-CoV-2-contaminated aerosols indoors?. News-Medical. Retrieved on July 29, 2021 from

  • MLA

    Thomas, Liji. "Could portable air filters promote clearance of SARS-CoV-2-contaminated aerosols indoors?". News-Medical. 29 July 2021. <>.

  • Chicago

    Thomas, Liji. "Could portable air filters promote clearance of SARS-CoV-2-contaminated aerosols indoors?". News-Medical. (accessed July 29, 2021).

  • Harvard

    Thomas, Liji. 2021. Could portable air filters promote clearance of SARS-CoV-2-contaminated aerosols indoors?. News-Medical, viewed 29 July 2021,


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
You might also like... ×
SARS-CoV-2 spike-specific antibodies induced in breast milk by COVID-19 vaccines