SARS-CoV-2 variants show distinct humoral response and transcriptional profiles in hamster model

NewsGuard 100/100 Score

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel, highly infectious respiratory virus, and the causative agent of coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2, which first originated in Wuhan, in Hubei province of China, is a member of the Coronavirdae family and has a large, non-segmented RNA genome.

High levels of transmission in regions with low rates of vaccination encourage mutations that boost viral fitness. SARS-CoV-2 variants of concern (VOCs) are variants with one or more mutations having adverse epidemiologic, immunologic, or pathogenic properties.

The B.1.1.7 (Alpha) variant has over 20 mutations, including N501Y within the spike (S) protein, and is associated with increased transmissibility compared to the original virus. It also has increased binding affinity to the angiotensin-converting enzyme 2 (ACE2) receptor in host cells that plays a role in viral entry.

The B.1.351 (Beta) variant, originally reported in South Africa, has similar mutations in the spike as well as the K417N and E484K substitutions that could decrease the efficacy of currently available vaccines.

Given the possibility of potential vaccine resistance of the VOCs, it is crucial to understand the impact of the newly emerging variants on host immune response and disease dynamics to guide the development of COVID-19 vaccines and therapeutics.

Analyzing the pathogenic and transcriptomic differences of emerging SARS-CoV-2 VOCs in the Syrian golden hamster model

Syrian golden hamsters are one of the most popular small animal models used in COVID-19 research globally. Recently, researchers from the US conducted a study in which they intranasally inoculated different SARS-CoV-2 variants into hamsters. This study is published on the bioRxiv* preprint server.

The ancestral virus (nCoV-WA1-2020) or the B.1.1.7 variant first identified in the UK and the B.1.351 variant first identified in South Africa caused similar gross and histopathologic pulmonary lesions.

"Syrian golden hamsters were chosen for this study as they are highly susceptible to infection 237 and were found to have high viral replication in the lungs."

While differences in viral genomic copy numbers were observed in the lungs and oral swabs of infected animals, infectious titers were comparable in the lungs. Antibody neutralization capacities varied based on the original virus and cross-variant protective capacity. Transcriptional profiling showed significant induction of antiviral pathways in response to all three viral variants with a more robust inflammatory signature in response to the B.1.1.7 variant. Moreover, no additional spike protein mutations were detected at peak disease.

Histopathology and Immunohistochemistry of hamster lungs. (A-H) Representative H&E images of lungs of hamsters infected with 105 TCID50 of ancestral, B.1.1.7, and B.1.351 variants at 4 days post-challenge (DPC). Foci of interstitial pneumonia and bronchiolitis were observed throughout all evaluated lung lobes of infected hamsters. (I-L) Immunohistochemistry (IHC) detected SARS-CoV-2 nucleocapsid staining in the lungs of all infected hamsters.
Histopathology and Immunohistochemistry of hamster lungs. (A-H) Representative H&E images of lungs of hamsters infected with 105 TCID50 of ancestral, B.1.1.7, and B.1.351 variants at 4 days post-challenge (DPC). Foci of interstitial pneumonia and bronchiolitis were observed throughout all evaluated lung lobes of infected hamsters. (I-L) Immunohistochemistry (IHC) detected SARS-CoV-2 nucleocapsid staining in the lungs of all infected hamsters.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

The researchers also detected many differentially expressed genes (DEGs) related to tissue morphogenesis and angiogenesis in all three infection challenges. Microvascular injury can further aggravate inflammation-driven lung fibrosis. Also, genes that have a role in tissue repair were downregulated after infection with the B.1.35 and ancestral variants.

"Analysis of the humoral response revealed that the overall IgG response of the infected 249 hamsters did not result in robust differences amongst the variants; however, the neutralization 250 cross-protection depended on the variant the hamster was initially exposed to."

To summarize, this study describes the pathogenesis of SARS-CoV-2 variants and the development of cross-reactive neutralizing antibodies. According to the authors, this is the first study that performed a comparative and longitudinal analysis of the immune response after infection with SARS-CoV-2 VOCs.

They found that infection with the B.1.1.7 VOC results in a better response compared to infection with the B.1.35 VOC. This broader response to B.1.1.7 may be partly mediated by the more robust transcriptional response induced by this variant, including a more significant induction of antiviral and inflammatory pathways. The authors believe that additional studies must investigate the mechanisms through which the mutations detected in the B.1.35 VOC result in reduced neutralization potential.

"Future experiments should assess transcriptional changes beyond 4 DPC to determine the kinetics of the host response at this critical site. "

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 11 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2023, April 11). SARS-CoV-2 variants show distinct humoral response and transcriptional profiles in hamster model. News-Medical. Retrieved on April 25, 2024 from https://www.news-medical.net/news/20210714/SARS-CoV-2-variants-show-distinct-humoral-response-and-transcriptional-profiles-in-hamster-model.aspx.

  • MLA

    Cheriyedath, Susha. "SARS-CoV-2 variants show distinct humoral response and transcriptional profiles in hamster model". News-Medical. 25 April 2024. <https://www.news-medical.net/news/20210714/SARS-CoV-2-variants-show-distinct-humoral-response-and-transcriptional-profiles-in-hamster-model.aspx>.

  • Chicago

    Cheriyedath, Susha. "SARS-CoV-2 variants show distinct humoral response and transcriptional profiles in hamster model". News-Medical. https://www.news-medical.net/news/20210714/SARS-CoV-2-variants-show-distinct-humoral-response-and-transcriptional-profiles-in-hamster-model.aspx. (accessed April 25, 2024).

  • Harvard

    Cheriyedath, Susha. 2023. SARS-CoV-2 variants show distinct humoral response and transcriptional profiles in hamster model. News-Medical, viewed 25 April 2024, https://www.news-medical.net/news/20210714/SARS-CoV-2-variants-show-distinct-humoral-response-and-transcriptional-profiles-in-hamster-model.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New tARC-seq method enhances precision in tracking SARS-CoV-2 mutations