Study reveals an alternative mechanism for muscle tissue repair after physiological damage

Muscle is known to regenerate through a complex process that involves several steps and relies on stem cells. Now, a new study led by researchers at UPF, Centro Nacional de Investigationes Cardiovasculares (CNIC), CIBERNED and Instituto de Medicina Molecular João Lobo Antunes (iMM, Portugal), published on 15 October in the journal Science, describes a new mechanism for muscle repair after physiological damage relying on the rearrangement of muscle fiber nuclei, and independently of muscle stem cells. This protective mechanism paves the way to a broader understanding of muscle repair in physiology and disease.

Skeletal muscle tissue, the organ responsible for locomotion, is formed by cells (fibers) that have more than one nucleus, an almost unique feature in our body. Despite the plasticity of these fibers, their contraction can be associated with muscle damage.

Even in physiological conditions, regeneration is vital for muscle to endure the mechanical stress of contraction, which often leads to cellular damage".

William Roman, Study First Author and Researcher, Pompeu Fabra University

Although muscle regeneration has been investigated in depth in recent decades, most studies centred on mechanisms involving several cells, including muscle stem cells, which are required when extensive muscle damage occurs."

This muscle fiber self-repair process occurs rapidly both in mice and in humans after exercise-induced muscle injury, and thus represents a time- and energy-efficient protective mechanism for the repair of minor lesions.

"In this study we found an alternative mechanism of muscle tissue repair that is muscle-fiber autonomous", says Pura Muñoz-Cánoves, ICREA professor and principal investigator at UPF and the CNIC, and study leader. Researchers (including Antonio Serrano (UPF) and Mari Carmen Gómez-Cabrera (University of Valencia and INCLIVA) used different in vitro models of injury and models of exercise in mice and humans to observe that upon injury, nuclei are attracted to the damage site, accelerating the repair of the contractile units. Next, the team dissected the molecular mechanism of this observation. "Our experiments with muscle cells in the laboratory showed that the movement of nuclei to injury sites resulted in the local delivery of mRNA molecules. These mRNA molecules are translated into proteins at the site of injury to act as building blocks for muscle repair", explains William Roman. "This muscle fiber self-repair process occurs rapidly both in mice and in humans after exercise-induced muscle injury, and thus represents a time- and energy-efficient protective mechanism for the repair of minor lesions", adds Pura Muñoz-Cánoves.

This finding constitutes an important advance in the understanding of muscle biology, in physiology (including exercise physiology) and muscle dysfunction.

In addition to its implications for muscle research, this study also introduces more general concepts for cell biology, such as the movement of nuclei to injury sites. "One of the most fascinating things about these cells is the movement during the development of their nuclei, the biggest organelles inside the cell, but the reasons why nuclei move are largely unknown. Now, we have shown a functional relevance for this phenomenon in adulthood during cell repair and regeneration", says Edgar R. Gomes, group leader at the Instituto de Medicina Molecular and a professor at the Faculty of Medicine at the University of Lisbon, who co-led the study.

On the importance of these discoveries, Pura Muñoz-Cánoves, Antonio Serrano and Mari Carmen Gómez-Cabrera agree that: "This finding constitutes an important advance in the understanding of muscle biology, in physiology (including exercise physiology) and muscle dysfunction".

Source:
Journal reference:

Roman, W., et al. (2021) Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction. Science. doi.org/10.1126/science.abe5620.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
You might also like... ×
Southampton researchers invent new way to generate cartilage tissue from stem cells