AI could help better diagnose blood diseases

How can we better diagnose blood diseases? A research group led by Helmholtz Munich aims to answer this question with artificial intelligence (AI). Their goal is to facilitate the time-consuming analysis of bone marrow cells under the microscope. The researchers developed the largest open-source database on microscopic images of bone marrow cells to date. They use it as the basis for an AI model with high potential for routine diagnostics.

Every day, cytologists around the world use optical microscopes to analyze and classify samples of bone marrow cells thousands of times. This method to diagnose blood diseases was established more than 150 years ago, but it suffers from being very complex. Looking for rare but diagnostically important cells is both a laborious and time-consuming task. Artificial intelligence has the potential to boost this method – however it needs a large amount of high-quality data to train an AI algorithm.

Largest open-source database for bone marrow cell images

The Helmholtz Munich researchers developed the largest open access database on microscopic images of bone marrow cells to date. The database consists of more than 170,000 single-cell images from over 900 patients with various blood diseases. It is the result of a collaboration from Helmholtz Munich with the LMU University Hospital Munich, the MLL Munich Leukemia Lab (one of the largest diagnostic providers in this field worldwide) and Fraunhofer Institute for Integrated Circuits.

Using the database to boost artificial intelligence

"On top of our database, we have developed a neural network that outperforms previous machine learning algorithms for cell classification in terms of accuracy, but also in terms of generalizability," says Christian Matek, lead author of the new study. The deep neural network is a machine learning concept specifically designed to process images.

The analysis of bone marrow cells has not yet been performed with such advanced neural networks, which is also due to the fact that high-quality, public datasets have not been available until now."

Christian Matek, lead author

The researchers aim to further expand their bone marrow cell database to capture a broader range of findings and to prospectively validate their model. "The database and the model are freely available for research and training purposes – to educate professionals or as a reference for further AI-based approaches e.g. in blood cancer diagnostics," says study leader Carsten Marr.

Journal reference:

Matek, C., et al. (2021) Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
You might also like...
NIH's Bridge2AI program aims to expand use of AI by biomedical and behavioral research communities